

Time  Room  Professor  


TBD  TBD  → Stefan Wolf  

Papers  Date and speakers  

[1]  Universality of quantum circuits (3 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapters 23) PDF Quantum Information and Quantum Computation, M. Nielsen, I. Chuang (Chapter 4 + Appendix 3)  
[2]  Beyond Shor's Algorithm: Quantum Fourier Transform and Hidden Subgroup problem (4 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapters 46) PDF Quantum Computing: Lecture Notes, R. de Wolf (Chapters 46) PDF Quantum Information and Quantum Computation, M. Nielsen, I. Chuang (Chapter 5)  
[3]  Quantum random walks: how to quantize a Markov chain (3 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapter 17) PDF Quantum speedup of Markov chain based algorithms [Original paper], M. Szegedy (2004) PDF Note: A prior knowledge on random walks/Markov chains is recommended, although not required. For materials on Markov chains, contact us.  
[4]  Quantum random walks: the glued trees problem (2 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapter 16) PDF Exponential algorithmic speedup by quantum walk [Original paper], A. Childs et al. (2002) PDF Note: A prior knowledge on random walks/Markov chains is recommended, although not required. For materials on Markov chains, contact us.  
[5]  Quantum random walks: element distinctness (2 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapter 19) PDF Quantum walk algorithm for element distinctness [Original paper], A. Ambainis (2003) PDF  
[6]  Solving linear systems: the HHL algorithm (2 students) Quantum Computing: Lecture Notes, R. de Wolf (Chapter 10) PDF Quantum algorithm for solving linear systems of equations [Original paper], A. W. Harrow, A. Hassidim, S. Lloyd (2008) PDF  
[7]  Lower bounds for quantum algorithms: the polynomial method and the adversary bound (4 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapters 2023) PDF Quantum Computing: Lecture Notes, R. de Wolf (Chapters 1112) PDF Note: The dual adversary bound uses semidefinite programming. Some knowledge of linear programming is enough. Otherwise, contact us for a brief introduction.  
[8]  Simulation of quantum systems: Hamiltonian simulation (4 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapters 2527) PDF Quantum Computing: Lecture Notes, R. de Wolf (Chapter 9) PDF Note: No prior knowledge of quantum mechanics is required. If you need a quick introduction on the Schrödinger equation, contact us.  
[9]  Quantum machine learning and variational quantum algorithms (3 students) Quantum Computing: Lecture Notes, R. de Wolf (Chapter 19) PDF Variational Quantum Algorithms, M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, L. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, P. J. Coles (2020) PDF  
[10]  Adiabatic quantum computing (3 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapters 2829) PDF  
[11]  Quantum error correction: stabilizers, faulttolerance and the threshold theorem (3 students) Quantum Computing: Lecture Notes, R. de Wolf (Chapter 20) PDF Quantum Information and Quantum Computation, M. Nielsen, I. Chuang (Chapter 10)  
[12]  Quantum Amplitude Estimation and application to Option Pricing (1 student) Option Pricing using Quantum Computers, N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Iten, N. Shen, S. Woerner (2019) PDF An Introduction to Quantum Computing, P. Kaye, R. Laflamme, M. Mosca (2007)  
[13]  The grand unification of quantum algorithms: quantum signal processing and the quantum singular value transformation (3 students) Lecture Notes on Quantum Algorithms, A. Childs (Chapter 27) PDF Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, A. Gilyén, Y. Su, G.H. Low, N. Wiebe (2018) PDF A Grand Unification of Quantum Algorithms, J. Martyn, Z. Rossi, A. Tan, I. Chuang (2021) PDF Note: This is a very recent topic and subject to intense research, with applications to both algorithms and machine learning. If you want a challenging topic for a possible project/thesis on quantum algorithms, then this should be a valid option.  
[14]  Quantum Cryptography (4 students) Quantum Computing: Lecture Notes, R. de Wolf (Chapter 18) PDF Quantum cryptography: Public key distribution and coin tossing, C. H. Bennett, G. Brassard (1984) PDF Quantum cryptography based on Bell's theorem, A. Ekert (1991) PDF 