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5.1 Introduction 

The second law of thermodynamics states that entropy is a nondecreasing function 
of time. One wonders whether this law is built into the physics of the universe or 
whether it is simply a common property of most stochastic processes. If the latter is 
the case, we should be able to prove the second law under mild conditions. 

Thus motivated, we will reverse the usual physical development and put the 
emphasis on stochastic processes, physically generated or otherwise, and attempt to 
determine the family of processes for which the second law holds. In the cou rse 
of this treatment we will suggest that relative entropy and conditional entropy are 
natural notions of what is meant by entropy in the second law. Certainly, the second 
law is true under milder conditions as we shift to these definitions. 

We shall concern ourselves here, primarily, with discrete time fi nite state Markov 
processes. To the extent that the physical universe is Markovian, our comments 
will apply to physics. Here we should be aware that coarse graining (lumping of 
states) of a Markov chain may destroy Markovity. A lso, while the Schrodinger wave 
function seems to evolve in a Markovian manner, the associated probabili ties do 
not. Thus Markovity is a strong assumption. 

We shall use Shannon entropy throughout. We ask whether the second law of 
thermodynamics is true of all fi nite state Markov processes. We shall find , somewhat 
surprisingly, that it is only true of doubly stochastic Markov processes. Equiva-
lently, the second law is only true of Markov processes for which the equilibrium 
distribution is uniform over the finite state space. We will find that a slight change 
in the statement of the second law suffices to cover all Markov chains. Instead 
of the statement, "entropy always increases," we may substitute the more general 
statement that '·relative entropy (of the current distribution with respect to the 
stationary distribution) decreases." 

An interesting discussion of time symmetry and the second law can be found in 
Mackey (1992). The development of the second law from the physical standpoint is 
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argued in Van Kampen ( 1990), Wehrl (1978) and Tisza ( 1966), where good histories 
of the subject can be found . The consequences of the second law for Maxwell's 
Demon can be found in the collection of papers by Leff and Rex (1990). A 
probabilistic investigation of the behavior of entropy for stochastic processes can be 
found in Kullback (1959), Renyi (1961), Csiszar (1967), Fritz (t97l), and Cover and 
Thomas ( 1991 ). 

5.2 Entropy and its Interpretations 

Let X be a random variable drawn according to a probability mass function p(x) 
over the finite set of outcomes f£. Shannon entropy is defined as 

H(X) =- LP(x) logp(x). 

We shall sometimes denote this as H(p). Here the entropy H has the interpretation 
that it is the minimal expected number of yes-no questions required to determine 
the outcome X. It can also be shown that it is the minimum expected number of 
fair coin flips required by a random number generator to generate an outcome X 
with the desired distribution. Also of importance is the conditional entropy H(XI Y) 
which can be written as 

H(XI Y) =- L p(y)p(xly) log p(xly) = L p(y)H(XI Y = y). 
Y,y y 

It can be shown, by writing logp(x,y) = logp(x) + logp(y lx), that H(X, Y) 
H(Y) + H(XIY). The strict concavity of the logarithm and Jensen's inequality 
immediately yield the result 

H(XIY ) H(X), 

with equality if and only if X and Y are independent. Thus, conditioning always 
reduces entropy. In fact, the reduction in entropy is strict unless the conditioning 
random variable Y is independent of X . 

Some other interpretations of the entropy H are as follows : 

Descriptive complexity: 

H(X) El(X ) < H (X) + 1 

where £/(X) is the minimum expected number of bits in the description of X . 

Asymptotic equipartition theorem: 
If X1, X2, ... be a discrete valued ergodic random process. Then the actual 
probability of the sequence of outcomes X 1, ••• , X 11 is close to 2- "H where H is 
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the entropy rate of the process defined by H = lim11-oo H(Xt , . . . , Xn) f n. More 
precisely, 

(X X ) _ 2-nH + o(11) p I> · . . , 11 - , 

where o(n)/ n converges to 0 as n --+ oo, with probability 1. The number of such 
" typical" sequences is approximately 2"H. This result allows one to interpret 2H 
as the volume of the effective support set of X . 

Kolmogorov complexity: 
Let K(x) = minp:U(p)=x l(p) be the minimum program length for a computer tllt, 
which causes the computer to print x and halt. Let X2, ... be an ergodic 
process with entropy rate H. Then 

EK(Xt , X2 , ... , X")--+ H, 
n 

as n--+ oo. 

Thus Kolmogorov complexity and Shannon entropy are asymptotically equal for 
ergodic processes. See Cover and Thomas (1991) for a proof for independent 
identically distributed processes. 

Number of microstates: 
For rough statements of the second law, it often suffices to take the logarithm 
of the number of microstates corresponding to a given macrostate in order to 
characterize the entropy of that macrostate. Implicit in this is that the probability is 
uniformly distributed over the microstates. (See our remarks about the asymptotic 
equipartition theorem.) In any case, the critical calculation of the number of 
microstates usually involves a multinomiaJ coefficient which can be shown to be 
equal to 

Another important quantity for this discussion will be the relative entropy 
D(pJi r), sometimes known as the Kullback-Leibler information, or the information 
for discrimination. The relative entropy D(p 11 r) between two probability mass 
functions p(x) and r(x), p(x) 0, L: p(x) = 1, r(x) 0, L: r(x) = 1, is 
defined by 

D(p 11 r) = L p(x) Jog 
X 

The relative entropy is always nonnegative, as shown in the following theorem: 
Theorem 1. D(p 11 r) 0 with equality if and only if p(x) = r(x) for all x. 
Proof. Let A be the support set of p(x). We use Jensen's inquality and the strict 
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concavity of the logarithm to show 

-D(p 11 r) = L p(x) log r((x)) log L p(x) r((x)) =log L r(x) log 1 = 0. 
A pX A pX A 

The interpretations of relative entropy are as fo llows: 

Likelihood ratio: 
The relative entropy is the expected log likelihood ratio between distributions p 
and r. 

Hypothesis testing exponent: 
The probability of error in a hypothesis test between distribution p and distri-
bution r for independent identically distributed observations drawn according 
to one of these, has a probability of error given to first order in the exponent 
by Pe = e- "0 . Thus D is the degree of difficulty in distinguishing two distributions. 

Redundancy: 
If one designs an optimal description for distribution r when in fact distribution p 
is true, then instead of requiring H(p) bits for the description, the random variable 
requires H(p) + D(p 11 r) bits, as given in the following expression: 

H + D Epl(X) < H + D + 1. 

Large deviation theory: 
Also, relative entropy arises in large deviation theory. The probability of phys-
ical data appearing to have macrostate r when in fact observations are drawn 
according to p is 

5.3 General Results about Increase in Entropy 

Although we shall eventually argue that the entropy increase is not true for general 
Markov chains, there are a number of preliminary general results about the increase 
of entropy which agree with intuition. 

First, it makes sense that for any stochastic process whatsoever, Markov or not, 
in equilibrium or not, the entropy of the present state given the past increases as 
the amount of information about the past decreases. This is due to the fact that 
conditioning always reduces entropy. This is embodied in the following theorem. 

This theorem proves that the conditional entropy of the present given the far past 
increases as the past recedes, but simple examples exist for which the conditional 
entropy of the process at time n given the fixed past up to time 0 may actually 
decrease. 

Let denote (X m, Xm+t. Xm+2· ... , X,) throughout this discussion. 
Theorem 2. For all stochastic processes, is monotonically nondecreasing. 
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The apparently similar quantity H does nor generally increase with n. but it 
does increase if the process is stationary. 

Proof. Conditioning reduces entropy. Thus 

H(XoiX=:;, ) = H(XoiX=t;+'>,x_")::;; 

proving the first statement. 1 n the second statement, periodic processes provide 
counterexamples to the monotonicity of but the additional assumption 
of stationarity yields 

= 
establishing the increase of for stationary processes. 

We can now demonstrate a nice symmetry property of the conditional entropy of 
the present, given the past and given the fu ture, for all stationary processes, Markov 
or otherwise. (A stationary process is in equilibrium.) 

Theorem 3. H(XoiX_,,X- 2, ... ,X_") = H(XoiX,,X1, ... , X,) for all stationary 
processes, Markov or otherwise. Also, for all stationary processes, 

= H(XI'IXo). 

P roof. By stationarity, H(X_" , .. . ,X_ 1,Xo) = H(Xo,X,, ... ,X"). Then the chain 
rule yields 

+ H(Xo) = H(XI'IXo) + H(Xo), 

thus proving the second assertion. The first assertion is proved similarly. 
Remark. The fact that the entropy of the present given the n-past is equal to the 

entropy of the present given the n-future is somewhat surprising in light of the fact 
that the statement is true even for time-irreversible processes. Consider, for example, 
a Markov chain with transition matrix 

[ 

.l .9 0 l 
p = 0 .1 .9 . 

. 8 0 .2 

Here it is clear that one can determine the direction of time by looking at the sample 
path. Nonetheless, the entropy of the present given a chunk of the future is equal to 
the entropy of the present given the corresponding chunk of the past. 

5.4 Rela tive Entropy Always Decreases 

We now state a theorem about relative entropy which shows the monotonic increase 
of relative entropy for all Markov chains, stationary or not. From this we will 
derive, by application, the second Jaw of thermodynamics, which holds for doubly 
stochastic Markov chains. Versions of the following theorem appear in Kullback 
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(1959), Cover and Thomas (1991), Van Kampen (1990), Fritz (1973), Csiszar (1967), 
Renyi (1961), and the survey by Wehrl (1978). 

Theorem 4. Let J.l11 and 11:, be two probability mass functions on the state space of 
a finite state Markov chain at time n. Then D(/L11 11 J.L;, ) is monotonical/y decreasing. In 
particular, if J.l is the unique stationary distribution , 

D(J.lrr 11 J.l) \. 0. 

Before proving this we need a definition and a lemma. We first define a conditional 
version of the relative entropy. 

Definition: Given two joint probability mass functions p(x, y) and q(x, y), the 
conditional relative entropy D(p(y lx) 11 q(ylx)) is the expected value of the relative 
entropies between the conditional probability mass functions p(ylx) and q(yjx ) 
averaged over the probability mass function p(x). More precisely, 

D(p(ylx) 11 q(ylx)) = L p(x) L p(ylx) log p((YI:)). 
X y q Yl 

Lemma: (Chain rule for relative entropy.) 

D(p(x,y) 11 q(x,y)) = D(p(x) 11 q(x)) + D(p(ylx) 11 q(ylx)). 

Proof: Write p(x,y)/q(x,y) = p(x)p(ylx) / q(x)q(ylx) and expand D(p(x,y) 11 

q(x, y)). 
Proof of Theorem 4: Let J.lrr and be two probability mass functions on the state 

space of a Markov chain at lime n, and let J.Lrr+ l and be the corresponding 
distributions at time 11 + 1. Let the corresponding joint mass functions be denoted by 
p and q. Thus p(x,., x,.+ J) = p(x,)r(x,+Jix,) and q(X11 , Xrr+Il = q(x,.)r(xn+Iixn), where 
r(·i·) is the probability transition function for the Markov chain. Then by the chain 
rule for relative entropy, we have two expansions: 

D(p(x,, Xrr+I ) 11 q(x,, Xrr+ l)) = D(p(x .. ) 11 q(x,.)) + D(p(Xrr+Jix,) 11 q(Xrr+t lx,.)) 
= D(p(xrr+I) 11 q(x,.+J)) + D(p(xniXrr+Il 11 q(xn iXrr+J)). 

Since both p and q are derived from the Markov chain, the conditional probability 
mass functions p(xrr+I Ix,) and q(xn+JIX11 ) are both equal to r(xn+IIxn) and hence 
D(p(xn+dx .. ) 11 q(xrr+Iix,)) = 0. Now using the non-negativity of D(p(x11 1Xn+tl 11 

q(x,. jx,.+J)), we have 

or 

D(J.Ln 11 J.l:,J D(J.Ln+J 11 J.l:r+l). 

Consequently, the distance between the probability mass functions is decreasing with 
time n for any Markov chain. 
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Finally, if we let 11:, be any stationary distribution J.L, tben 11;,+1 = J.L;, = Hence 

which implies that any state distribution approaches the stationary distribution as 
time passes. The sequence D(Jt11 11 J.L) is a monotonically non-increasing non-negative 
sequence and must therefore have a limit. [t can be shown that the limit is actually 
0 if the stationary distribution is unique. 

We now specialize this result to obtain the result for entropy increase for Markov 
chains. 

Theorem 5. Consider a finite state Markov chain. Then H(X11 ) l' for any initial 
distribution on Xo if and only if the Markov transition matrix is doubly stochastic, i.e., 
if and only if the stationary distribution for the Markov chain is uniform. 

Proof. Let m denote the number of states. We note that 

D(J.L" 11 J.L) = L J111(x) log = -H(tt") +log m • 
.V: 

Thus monotonic decrease in D induces a monotonic increase in H. Moreover, if the 
stationary distribution is unique, then D '11 0 by Theorem 4, and H(X11 ) l' log m. 

To see that there are initial distributions for which the entropy decreases when the 
doubly stochastic conditions are not satisfied, Jet the initial state Xo have the uniform 
distribution. Then, H(Xo) =log m, which is the maximum possible entropy. As time 
goes on, H(X") will converge to H(Jl), the entropy of the stationary distribution. 
Since the stationary distribution is not uniform for this example, the entropy must 
decrease at some time. 

5.5 Stationary Markov Chains 

A number of entropy-increase or second law theorems are true if the process 
is already in equilibrium. This seems strange since a process in equilibrium is 
stationary and the entropy will remain constant. However, the appropriate entropy 
is the conditional entropy of the future given the present. That is, if one cuts into 
a process in equilibrium and observes its state, the conditional uncertainty of the 
future will grow with time. 

Theorem 6. If X 11 is stationary Markov chain, then the entropy H(X11 ) is constant, 
and 

H (X" IXJ) l' 

with n. 
Proof. Stationarity implies the marginal distributions are the same; thus H(X11 ) is 

constant. To prove monotonicity, we use conditioning and Markovity to show 



Which Processes Satisfy the Second Law? 105 

where the first inequality follows from conditioning, the second from Markovity, 
and the last from stationarity. 

5.6 Time Asymmetry 

It is intriguing that a time asymmetric law like the second law of thermodynamics 
arises from a time symmetric physical process. This is not so puzzling if one believes 
that the initial conditions are extraordinary - for example, if one starts in a low 
entropy state. Thus, the time asymmetry comes from the asymmetry between the 
initial and final conditions. 

However, if the process is in equilibrium, then the entropy is constant. Nothing 
could be more time symmetric than that. However, the conditional entropy H(X, IXo} 
of a state at time 11 given the present, is monotonically increasing as observed in 
Theorem 6. There is no asymmetry in this because the conditional uncertainty 
H(X_, JXo) of the past given the present is a lso monotonically increasing. In short, 
the observation of the state of a process in equilibrium at time 0 yields an amount 
of information about the past and about the future which monotonically dissipates 
with time. Thus there is symmetry: conditional entropy increases in both directions 
of time. 

A true time asymmetry arises when we consider relative entropy. We have observed 
that the relative entropy distance D(J.t, 11 /1;,) between two probability mass functions 
on the state space decreases with time for Markov chains. This is true even for 
transition matrices r(x,+1lx,) that generate time reversible Markov chains. Here, 
then, is an apparent paradox. Why can't we reverse time, argue that the reversal of 
a Markov process is a lso Markov, and conclude that 11 decreases? 

The answer is that the time reversed processes, although Markov, do not have the 
same transition matrices, i.e. p(x, lx,+1) =I= q(x, lx,+d, so the argument in the proof 
of Theorem 4 does not apply. We conclude that there is indeed a time-asymmetric 
behavior (D(J.t, 11 \o) even for Markov processes generated from time symmetric 
physical laws. 

5.7 The Relation of Time-Discrete and Time-Continuous Markov Chains 

It should be pointed out that the study of time-continuous and time-discrete Markov 
chains may lead to different statements about the second law of thermodynamics. In 
a time-continuous Markov chain, one has intensities J..;j for the Poisson rate at which 
transitions take place from state i to state j. A typical condition (Yourgrau et al. 
1982) for the H theorem to hold, for example, would be the microscopic reversibility 
condition Aij = A.ji· 

A time-discrete Markov chain can be thought of as being generated by a time-
continuous Markov process where the states are labeled XL> X2, X3, ... as the transi-
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tions occur. Thus in our formalism 

H(X,) = H(X(l) IN(l) = n), 

where N(t) denotes the number of transitions that have taken place in the continuous-
tjme Markov chain. It may well be that H(X(t)) increases while 

H(X,) = H(X(t)IN(t) = n) 

does not increase with n. Thus, conditioning on the number of events may change 
the qualitative statement of the second law for such processes. 

The discrete-time analysis in this paper deals with the event-driven rather than 
absolute time driven idea of time. 

5.8 Summary of Relevant Results 

We now gather these results in increasing order of generality. 
The entropy H(X,) increases for a finite state Markov chain with an arbitrary 

initial distribution if the stationary distribution is uniform. 
The conditional entropies H(X, jXt) and H(X_, jXo) increase with time for a 

stationary Markov chain. 
The conditional entropy H(Xo!X,) of the initial condi tion X 0 increases for any 

Markov chain. 
The relative entropy D(.u, IIJL) between a distribution p, and the stationary distri-

bution .u decreases with time for any Markov chain. 
The conditional entropy H(X,. jXo, X - 1, .. • ) of a process at time n given the past 

up to time zero increases for any stationary process. 
The conditional entropy H (XoiX_,, X _(, + ll> ... ) of the present given the past 

increases as the past recedes for all processes. 

5.9 Conclusions 

While the second law of thermodynamjcs is only true for special finite-state Markov 
chains, it is universally true for Markov chains that the relative entropy distance 
of a given distribution from the stationary distribution decreases with time. This 
leads to a natural general statement of the second law for Markov chains: relative 
entropy decreases. To specialize this to the statement that entropy increases, one 
must restrict oneself to Markov chains with a uniform stationary distribution or to 
certain Markov chains with a suitable low entropy initial condition. 

Finally, the second law of thermodynamics says that uncertrunty increases in 
closed physical systems and that the availability of useful energy decreases. If one 
can make the concept of " physical information" meaningful, it should be possible 
to augment the statement of the second law of thermodynamics with the statement, 
" useful information becomes less available." Thus the ability of a physical system to 
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act as a computer should slowly degenerate as the system becomes more amorphous 
and closer to equilibrium. A perpetual computer should be impossible. 

Discussion 

Albrccht Relative entropy sounds like it has something to do with coarse graining. Can one 
think of it as being relative to a particular description or parameterization of phase space? 

Cover Yes. Although the coarse graining is arbitrary, the natural distribution to place on 
the coarse graining is the stationary or equilibrium distribution. Then, the relative entropy 
distance of the current distribution from this stat ionary distribution is monotonically 
decreasing in time for any Markovian process. Consequently, the difficulty in measuring 
the difference of the current distribution from the equilibrium distribution increases with 
time. One should be aware, however, that coarse graining can destroy Markovity unless 
the partition is adroitly chosen. 

Lloyd lt is a commonly claimed feature of the psychological arrow of time that we know 
more abou t the past than we do about the future. How do you square this with the result 
that the amounts o f information about the past and future that a system has in the present 
are equal in a stationary process? 

Cover The key ingredient is that the statement holds in general only for processes in 
equilibrium. The theorem you are referring to states that the future is as uncertain as the 
past, conditioned on the present, for stationary Markov processes. That is to say, where we 
are going is conditionally as uncertain as how we got to where we are, at least for Markov 
processes in equilibrium. This intriguing symmetry is true even for time-asymmetric Markov 
chains. Apparently, this symmetry in information about past and future given the present 
follows entirely from the s tationary Markovian assumption of the process and not from 
the time symmetry. That's the main point. 
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