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Abstract 

Nontrivial, "complex" or " organized" states of a physical system may be charac-
terized as those implausible save as the result of a long causal history or evolution. 
This notion, formalized by the tools of the theory of universal digital computers, is 
compared to other notions of complexity, and an attempt is made to sketch open 
problems in the computation theory and statistical physics whose resolution would 
lead to a better fundamental understanding of "self-organization" in the universe. 

The manifest complexity of many parts of the universe, especially living organisms 
and their byproducts, was formerly thought to be an expression of divine creativity, 
but is now widely believed to result from a general capacity of matter, implicit in 
known physical laws, to "self-organize" under certain conditions. 

As a rough illustration of the essential ideas of self-organization, consider a sealed 
aquarium illuminated by a light source and containing a dead mixture of prebiotic 
chemicals. After a long time this system will fluctuate or otherwise find its way 
into a "live" macrostate containing, for example, fish and green plants. This live 
state will be somewhat stabilized relative to dead states by the light, which enables 
the organisms to grow, reproduce and metabolically defend themselves against 
thermal and other degradation. In an aquarium of ordinary size, dead states would 
still be overwhelmingly more probable even in the presence of the light, because 
spontaneous biogenesis would probably be far less likely than a "gambler's ruin" 
ecological fluctuation in which, say, the fish died of starvation after eating all the 
plants. But the larger the aquarium, the less likely will be a simultaneous extinction 
everywhere within it, and the more likely a spontaneous biogenesis somewhere 
within it. Finally, if the aquarium were the size of the earth, it might spend most of 
its time alive, as suggested by paleontological evidence of one dead-to-live and no 
live-to-dead transitions so far. 

To elevate this kind of thinking from a truism that everyone agrees with but no 
one really understands, to a level of provable or refutable conjectures in statistical 
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physics, we need a more rigorous and mathema tical defin ition of "complexity," the 
quantity that supposedly increases when a self-organizing system organizes itself. As 
might be expected, the problem of defining complexity is itself complex, and there 
are many satisfactory definitions of different kinds of complexity. Below we compare 
a number of candidates fo r a definition of complexity, dismissing most of them as 
unsuitable to our purpose, without meaning to disparage their appropriateness in 
other contexts. For further details see [2] [4] [5). 

An object might be considered complex if it has complex behavior or function , 
for example if it is able to grow, reproduce, adapt, or evolve in an appropriate 
environment. Even if it were possible to find mathematical definitions of these 
properties, we believe a more structural and less functiona l definition is needed to 
understand self-organization, because even functionally inert objects, such as a dead 
body, a book, or a fossil , subjectively can be said to be complex, and would not 
plausibly be found in a universe lacking some sort of self-organization, or, God 
forbid, divine intervention. 

A more mathematical property related to complex function is computational uni-
versality, the ability of a system to be programmed through its initial condition 
to simulate any digital computation. Originally demonstrated for computer-like 
models such as Turing machines and deterministic cellular automata, computational 
universality has subsequently been demonstrated for models more closely resem-
bling those studied in mechanics and statistical mechanics, e.g. the hard sphere 
gas in an appropriate periodic potential [10], noisy cellular automata in 1 and 3 
dimensions [12] [13], systems of partia l differential equations [17] and even a single 
classical particle in a finitely complicated box [16]. The ability of universal systems 
to simulate one another entails that the dynamics of any one of them encodes, in 
a straightforward manner, the dynamics of any other, and indeed of any process 
whose outcome ca n be determined by logical deduction or numerical simulation. 
For example, one can readily find an initial condition for Moore's particle [16] which 
will enter a designated region of space if and only if white has a winning strategy 
in chess, and another initial condition that will do so if and only if the millionth 
decimal d igit of n is a 7. Computational universality therefore now appears to be 
a property that realistic physical systems can have ; moreover if a physical system 
does have that property, it is by definition capable of behavior as complex as any 
that can be digitally simulated. 

However, computational universality is an unsuitable criterion of complexity for 
our purposes because it is a functional property of systems rather than a structural 
property of states. In other words it does not distinguish between a system merely 
capable of complex behavior and one in which the complex behavior has actually 
occurred. The complexity measure we will ultimately advocate, logical depth, is 
closely related to the notion of universal computation, but it allows complexity to 
increase as it intuitively should in the course of a "self-organizing" system's time 
development. 
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Thermodynamic potentials. such as entropy or free energy, measure capacity for 
irreversible change, but do not agree with subjective complexity. A human body 
is more complex than a vat of nitroglycerine, but has lower free energy. Similarly 
a bottle of sterile nutrient solution has higher free energy, but lower subjective 
complexity, than the bacterial culture it would turn into if inocculated with a single 
seed bacterium. The growth of bacteria following inocculation is a thermodynam-
ically irreversible process analogous to crystallization of a supersaturated solution 
inocculated with a seed crystal. Each is accompanied by a decrease in free energy, 
and, even in the absence of a seed, is vastly more probable than its reverse : the 
spontaneous melting of a crystal into a supersaturated solution, or the spontaneous 
transformation of bacteria into high-free-energy nutrients. The unliklihood of a 
bottle of sterile nutrient transforming itself into bacteria is therefore not a mani-
festation of the second law, but rather of a putative new "slow growth law" which 
forbids complexity, however it is defined, to increase quickly, but allows it to in-
crease slowly, e.g. over geological time in biogenesis. This example also illustrates the 
non-additivity of subjective complexity. One bacterium seems much more complex 
than none, but only slightly less complex than the bottle full of descendants it can 
quickly give rise to. 

Algorithmic Information Content, also called Algorithmic Entropy, Algorithmic 
Complexity, or Solomonoff-Kolmogorov-Chaitin Complexity [20][7][8], formalizes 
the notion of amount of information necessary to uniquely describe a digital object 
x. A digital object means one that can be represented as a finite binary string, for 
example, a genome, an Ising microstate, or an appropriately coarse-grained repre-
sentation of a point in some continuum state space. The algorithmic entropy H (x) of 
such an object is defined as the negative base-2 logarithm of the object's algorithmic 
probability, P(x). This in turn is defined as the probability that a standard universal 
computer U, randomly programmed (for example by the proverbial monkey typing 
at a binary keyboard with two keys), would embark on a computation yielding x as 
its sole output, a fterward halting. The algorithmic probability P(x) may be thought 
of a weighted sum of contributions from a ll programs that produce x, each weighted 
according to the negative exponential o f its binary length, which is the probability 
that the monkey will type that particular program and so cause it to be executed. 
An algorithmically random string is defined as one of maximal information contenr, 
nearly equal to the length of the string (even if a string has no regularities permit-
ting it to be produced with higher probability, any N-bit string can be generated 
with probability at least 2-(N+O(IogN)) by a "print program" in which the monkey 
essentially types the string out verbatim, a long with instructions, of length O(log N), 
directing the computer to pass these N bits on directly to the output and then halt). 

Turning now to the sum of P(x) over outputs, this sum Lx P(x) is not equal to 
unity as one might first suppose, because, as is well known, an undecidable subset 
of all universal computations fail to bait, and so produce no output. Therefore 
L.x P(x ) is an uncomputable irrational number less than l. This number, called 
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Chaitin's Omega [7], has many remarkable properties [14], such as the fact that its 
uncomputable digit sequence is a maximally compressed form of the information 
required to solve the halting problem. 

Despite being defined in terms of a particular universal computer, a lgorithmic 
probability is machine-independent up to an multiplicative constant (and algorithmic 
entropy up to an additive constant), because of the ability of universal computers to 
simulate one another (programs for one machine can be adapted to run on another 
by prefixing each program with a constant string, directing the second machine to 
simulate the first). 

Though very differently defined, algorithmic entropy is typically very close to 
ordinary statistical entropy - L: p log p in value. To take a simple example, it is easy 
to show that almost all N- bit strings drawn from a uniform distribution (of statistical 
entropy N bits) have algorithmic entropy nearly N bits. More generally, in any 
concisely describable ensemble of digital objects, e.g. a canonical ensemble of Ising 
microstates at a given temperature, the ensemble average of the objects' algorithmic 
entropy closely approximates the whole ensemble's statistical entropy [20] [1]. In 
the case of continuous ensembles, the relation between algorithmic and statistical 
entropy is less direct because it depends on the choice of coarse-graining. Zurek 
[21] discusses some of the conceptual issues involved. 

For this reason algorithmic information is best thought of as a measure of 
randomness, not subjective complexity, being maximal for coin-toss sequences, which 
are among the least organized subjectively. Typical organized objects, on the other 
hand, precisely because they are partially constrained and determined by the need 
to encode coherent function or meaning, contains less information than random 
sequences of the same length; and this information reflects not their organization, 
but their residual randomness. 

For example, the algorithmic information content of a genome represents the 
extent to which it is underdetermined by the constraint of viability. The existence of 
noncoding DNA, and the several percent differences between proteins performing 
apparently identical functions in different species, make it clear that a sizable fraction 
of the genetic coding capacity is given over to transmitting such "frozen accidents", 
evolutionary choices that might just as well have been made otherwise. 

A better way of applying statistical or algorithmic information to the definition 
of organization is to use it to characterize the correlations typical of organized or 
complex objects: two parts of such an object taken together typically require fewer 
bits to describe than the same two parts taken separately. This difference, the mutual 
algorithmic information between the parts, is the algorithmic counterpart of the non-
additivity of statistical or thermodynamic entropy between the two parts, the amount 
by which the entropy of the whole fall s short of the sum of the entropies of the 
two parts. In many contexts, e.g., communications through a noisy channel, mutual 
information can be viewed as the "meaningful" part of a message's information, the 
rest being meaningless information or "noise". 
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A body is said to have long range order if even arbitrarily remote parts of it are 
correlated. However, crystals have long range order but are not subjectively very 
complex. Organization has more to do with the amount of long-range correlation, 
i.e., the number of bits of mutual information between remote parts of the body. 
Although we wiU ultimately recommend a different organization measure (logical 
depth), remote mutual information merits some discussion, because it is character-
istically formed by nonequilibrium processes, and can apparently be present only in 
small amounts at thermal equilibrium. 

If two cells are taken from opposite ends of a multicellular organism, they will 
have a large amount of mutual information, if for no other reason than the presence 
in each cell of the same genome with the same load of frozen accidents. As 
indicated earlier, it is reasonably certain that at least several per cent of the coding 
capacity of natural genomes is used to transmit frozen accidents, and hence that the 
mutual information between parts of a higher organism is at least in the hundred 
megabit range. More generally, mutual information exists between remote parts 
of an organism (or a genome, or a book) because the parts contain evidence of a 
common, somewhat accidental history, and because they must function together in 
a way that imposes correlations between the parts without strictly determining the 
structure of any one part. An attractive feature of remote mutual information for 
physical systems is that it tends to a finite limit as the fineness of coarse-graining is 
increased, unlike simple information or entropy in a classical system. 

Since mutual information arises when an accident occurring in one place is repli-
cated or propagated to another remote place, its creation is an almost unavoidable 
side effect of reproduction in a probabilistic environment. Another obvious connec-
tion between mutual information and biology is the growth of mutual information 
between an organism and its environment when the organism adapts or learns. 

Further support for remote mutual information as an organization measure comes 
from the fact that systems stable at thermal equilibrium, even those with long range 
order, exhibit much less of it than nonequilibrium systems. Correlations in systems 
at equilibrium are generally of two kinds: short range correlations involving a large 
number of bits of information (e.g. the frozen-in correlations between adjacent lattice 
planes of an ice crystal, or the instantaneous correlations between atomic positions 
in adjacent regions of any solid or liquid), and long range correlations involving 
only a few bits of information. Typical of these latter correlations are infinite-range 
correlations associated with order parameters such as magnetization and crystal 
lattice orientation and phase. Even when these order parameters are continuous, 
they convey only a few bits of information, owing to the thermal and zero-point 
disorder which causes the lattice orientation, say, of an N- atom crystal to be well-
defined only to about log N bits precision. Besides involving much less information, 
remote correlations at equilibrium differ qualitatively from the non-equilibrium ones 
discussed earlier: equilibrium correlations, in a system with short-range forces, must 
be propagated through an intervening medium, while nonequililbrium ones (e.g. 
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between the contents of two newspaper dispensers in the same city) need not pass 
through the intervening medium but are instead typically propagated through a 
V-shaped path in spacetime connecting the random origin of the information at an 
earlier time with two separated copies of it at a later time. 

Despite these advantages, we believe remote mutual information is an unsatis-
factory complexity measure because large quantities of it can be produced rapidly, 
by subjectively trivial nonequilibrium processes, in violation of the slow growth 
law. For example, by pu lverizing a piece of glass with a hammer, one can pro-
duce a kind of 3-dimensional jigsaw puzzle of atomically complementary random 
fracture surfaces, with a non-additivity of entropy, between two specimens of the 
powder, proportional to the area of complementary surface between them. A greater 
non-additivity could be produced by enzymaticaJly replicating, and then stirring, a 
solution of random, biologically meaningless DNA molecules to produce a kind of 
jigsaw puzzle soup, two spoonfuls of which would have macroscopically less than 
twice the entropy of one spoonful. In both these examples, the mutual information 
is formed by nonequilibrium processes and would decay if the system were allowed 
to approach a state of true thermal equilibrium, e.g. by annealing of the separated 
fracture surfaces. 

A conspicuous feature of many nontrivial objects in nature and mathematics is 
the possession of a Jractal or self-similar or hierarchical structure, in which a part of 
the object is identical to, or is described by the same statistics as, an appropriately 
scaled image of the whole. This often beautiful property is too specialized to be 
an intuitively satistfactory criterion of complexity because it is absent from some 
subjectively complex objects, such as the decimal expansion of pi, and because, on 
the o ther hand self-similar structures can be produced quickly, e.g. by deterministic 
cellular automata, in violation of the slow growth law. Even so, the frequent 
association of self-similarity with other forms of organization deserves comment. ln 
some cases, self-similarity is a side-effect of computational universality, because a 
universal computer's ability to simulate other computers gives it in particular the 
ability to simulate itself. This makes the behavior of the computer on a subset of 
its input space (e.g., all inputs beginning with some prefix s that tells the computer 
to simulate itself) replicate its behavior on the whole input space. 

Logical Depth, the plausible number of computational steps in an object's causal 
history, is the complexity measure we chiefly recommend. A logically deep object, 
in other words, is one containing internal evidence of having resulted from a long 
computation, or from a dynamical process requiring a long time for a computer to 
simulate. Thus a fossi l is deep because it is plausible only as a byproduct of a long 
evolution, unlike the complementary fracture surfaces in the broken glass example 
above, which are plausible as the result of a short evolution. 

To formalize this no tion, we consider the distribution of running times of compu-
tations by which the standard universal computer might produce the digi tal output 
x. Let P,(x) be the probability that the standard universal computer, randomly 
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programmed by monkeys as before, would produce the output x by a computa-
tion that halts in time t. Thus P,(x), for each x, is a monotonically increasing 
function of £, approaching in the long time limit Poo(x) = P(x), i.e. the ordinary 
time-unbounded algorithmic probability discussed before. A digital object x is said 
to be "t deep with b bits confidence" iff P,(x) j P(x) < 2-b, in other words, if all 
but a fraction < l j 2b of the monkey computations that produce x take more time 
than t to do so. Inasmuch as the set of universal computations producing x may 
be regarded as a fairly-weighted microcosm of all causal or logical processes by 
which x could have arisen, for an object to be t deep with b bits confidence means 
that the complementary null hypothesis, that x originated by a process of fewer 
than t steps, can be rejected at the 2-b confidence level, i.e. as less likely tossing b 
consecutive tails with a fair coin. The confidence parameter b may seem a nuisance, 
but it is a necessary part of the idea. Since there are many ways of computing 
any output x, we can make no absolutely certain assertions about how x originated 
based on intrinsic evidence, only assertions at some level of statistjcal confidence. As 
in ordinary statistical discussions, we will sometimes omit mention of the confidence 
parameter, assuming it to have been set at a value that is safe and conservative in 
the given context. 

Thus defined, depth can be shown to be machine-independent and to obey the 
slow growth law to within a polynomial in the computation time and an additive 
constant plus a term of order log b in the confidence parameter [5]. This imprecision 
is unfortunately characteristic of the theory of computation times, which typically 
differ by a small polynomial between one universal machine and another (e.g. one 
machine may require time t2 + 4£ + 23 to simulate what another can do in time t). 

Algorithmjcally random strings, of maximal information content (nearly equal to 
their length) are shallow because the fast-running print program mentioned above 
contributes a significant fraction of their rather low algorithmic probability. At 
the other extreme, trivial nonrandom strings such as '0000000 .. .' are also shallow, 
because though their algorithmic probabibty is high, a great deal of it can be 
accounted for by small fast programs of the form "FOR I=l TO N; PRINT '0'; 
NEXT I;". On the other hand a string such as the second million digits of pi, 
which looks random and is not the output of any known small fast program, but 
is the output of a small slow program (Compute pi, throw away the first million 
digits, and print the next million), has the possibility of being deep. (This remains 
unproven, though. See below for a discussion of provably deep strings.) 

Returning to the realm of physical phenomena, we note that use of a universal 
computer frees the notion of depth from excessive dependence on particular physical 
processes (e.g., prebiotic chemistry) and allows an object to be called deep only if 
there is no shortcut path, physical or non-physical, to reconstruct it from a concise 
description. An object's logical depth may therefore be less than its chronological 
age. For example, old rocks typically contain physical evidence (e.g., isotope ratios) 
of the time elapsed since their solidification, but would not be called deep if the aging 
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process could be recapitulated quickly in a computer simulation. Intuitively, this 
means that the rocks' plausible history, though long in time, was rather uneventful, 
and therefore does not deserve to be called long in a logical sense. 

Although a deep object cannot quickly be made from a shallow one (slow growth 
rule) a deep object can be quickly made by juxtaposing two shallow objects, if these 
are correlated in a deep way. To see this, let x be a deep string and r be a random 
string of the same length, generated by coin tossing. Both r and the stringy obtained 
by XORing r and x bit by bit are uniformly distributed over the space of N- bit 
strings, and so both are with high probability algorithmically random and therefore 
shallow. However the concatenation string ry, from which x can quickly be made, is 
deep because of the deep correlation between r and y. 

In nature, something like the reverse of this process is more common: a deep 
object, interacting with its surroundings, typically contaminates them and makes 
them deep too. For example, outside our hotel, I found this beer-can pull-tab on 
the ground. I would say that a beer-can pull-tab, although a trivial and worthless 
byproduct of biological evolution, is so a priori implausible except as a byproduct 
some such evolution that it probably made the ground it was on nearly as deep as 
the civilization that produced the beer. 

Although time (machine cycles) is the resource closest to the intuitive notion of 
computational work, space (i.e. memory) is also important because it corresponds 
to a statistical mechanical system's number of particles or degrees of fre.edom. The 
maximum relevant time for a system with N degrees of freedom is of order 2N, 
the Poincare recurrence time ; and the deepest state such a system could relax to 
would be one requiring time 2N, but only memory N, to compute from a concise 
description. 

Unfortunately, it is not known that any space-bounded physical system or com-
puter can indeed produce objects of such great depth (exponential in N). This 
uncertainty stems from the famous open P=?PSPACE question in computational 
complexity theory [11], i.e., from the fact that it is not known whether there exist 
computable functions requiring exponentially more time to compute than space. In 
other words, though most complexity theorists suspect otherwise, it is possible that 
the outcome of every exponentially long computation or physical time evolution in a 
space-bounded system can be predicted or anticipated by a more efficient algorithm 
using only polynomial time. 

A widely held contrary view among complexity theorists today, considerably 
stronger than the mere belief that P is not equal to PSPACE, is that there are "cryp-
tographically strong" pseudorandom number generators [6] [15], whose successive 
outputs, on an N- bit seed, satisfy all polynomial time (in N) tests of randomness. 
The existence of such generators implies that space-bounded universal computers, 
and therefore any physical systems that mimic such computers, can after all produce 
exponentially deep outputs. 

Deep mathematical objects can be shown to exist without invoking any unproven 
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assumptions by diagonal arguments similar to that used to prove the existence of 
uncomputable functions. For example, for appropriate values of N (greater than a 
few thousand, say, to be safely larger than overhead in program size required to 
combine simple subroutines or program one simple machine to simulate another), 
the algorithm 

By exhaustive simulation of all possible computations running 
less than steps, find and print out the lexicographically 
first $N$-bit string $x$ whose algorithmic probability, from 
computations running less than steps, is less than $2-{-N/2}$ 

defines specific N- bit string that by construction is 2N deep with about N /2-logN-c 
bits confidence, where c is the number of bits required to program the above 
algorithm in machine language. The string must exist because there are too many 
N-bit strings for them all to have time-bounded algorithmic probability as great as 
2NI 2, and of the ones that do not, there must be a first. 

Though such constructions establish the existence of deep objects, actual execution 
of the algorithm would use so much space and time (exponential and double-
exponential in N, respectively) as to be utterly nonphysical. 

It is worth noting that neither algorithmic information nor depth is an effec-
tively computable property. This limitation follows from the most basic result of 
computability theory, the unsolvability of the halting problem, and reflects the fact 
that although we can prove a string nonrandom (by exhibiting a small program to 
compute it) we cannot in general prove it random. A string that seems shallow 
and random might in fact be the output of some very slow running small program, 
which ultimately halts but whose halting we have no means of predicting. This 
open-endedness is a necessary feature of the scientific method : at any time some 
phenomena will always be incompletely understood, so they appear more random 
and less deep than than they really are. 

The uncomputablilty of depth is no hindrance in the present theoretical setting 
where we assume a known cause (e.g., a physical system's initial conditions and 
equations of motion) and try to prove theorems about the depth of its typical 
effects. Here it is usually possible to set an upper bound on the depth of the effect 
by first showing that the system can be simulated by a universal computer within 
a time t and then invoking the slow growth rule to argue that such a computation, 
deterministic or probabilistic, is unlikely to have produced a result much deeper 
than t. On the other hand, proving lower bounds for depth, e.g., proving that a 
given deterministic or probabilistic cause certainly or probably leads to a deep effect, 
though always possible in principle, is more difficult, because it requires showing 
that no equally simple cause could have produced the same effect more quickly. 

Aside from its nonspecific usefulness in clarifying intuition, the notions of com-
plexity discussed here raise potentially decidable questions in statistical physics and 
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the theory of computation concerning necessary and sufficient conditions for the 
production of complexity, especially logical depth. 

In the theory of computation the relation of depth to classic unproved conjectures 
in time and space complexity has been mentioned. 

In statistical physics, the role of dissipation in generating and stabilizing complex-
ity is a major problem area. The need for dissipation to produce and stabilize remote 
non-additive entropy in locally interacting systems has already been mentioned and 
is fairly well understood. Concerning depth, one may ask in general how dissipation 
can help error-correcting computation to proceed despite the locally destructive 
effects of noise. 

One obvious way dissipation assists in error-correction is by allowing compression 
(many-to-one mapping) of a system's information-bearing degrees of freedom, which, 
in making the error, have undergone a one-to-many mapping. Another way dissi-
pation may help is by exempting systems from the Gibbs phase rule which applies 
to equilibrium systems with short-ranged interactions [3]. In typical d-dimensional 
equilibrium systems of this sort, barring symmetries or accidental degeneracy of 
parameters such as occurs on a coexistence line, there is a unique thermodynamic 
phase of lowest free energy. The nucleation and growth of this most stable state 
renders equilibrium systems ergodic and unable to store information reliably in the 
presence of " hostile" (i.e. symmetry-breaking) noise. Since they forget their initial 
conditions, such systems cannot be programmed by them, and so cannot be com-
putationally universal. Analogous dissipative systems, because they have no defined 
free energy in d dimensions, are exempt from this rule. A d + 1 dimensional free 
energy can be defined, but varying the parameters of the d dimensional model does 
not in general destabilize one phase relative to another [9]. 

One may ask what other properties besides irreversibility a system needs to take 
advantage of the exemption from Gibbs phase rule. Known examples, such as 
Toom's cellular automaton rules [19] , Jack rotation symmetry, but it is not known 
whether this is necessary. 

Conversely one can ask to what extent equilibrium systems (e.g. quasicrystals) can 
be caused to have computationally complex ground states. even though they remain 
subject to the Gibbs phase rule [18]. 

Finally one can ask whether dissipative processes such as turbulence, that are 
not explicitly computational or genetic or error-correcting, can still generate large 
amounts of remote non-additive entropy. Do they generate logical depth? Does 
a persistent hydrodynamic phenomenon such as Jupiter's Great Red Spot contain 
internal evidence of a non trivial dynamical history leading to its present state, or is 
there no syst.ematic objective difference between a the red spot of today and that of 
a century ago? 
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Discussion 

Schulman Is this " nonadditive entropy'' information, entropy, or something you'd measure 
with a calorimeter? 

Bennett Both. lt can be expressed as a nonadditivity of a lgorithmic information, or as a 
nonadditivity of thermodynamic entropy that could be measured, in the case of the DNA 
soup, by integrating along a reversible calorimetric path in which the duplicated DNA was 
reversibly restored to to its non-duplicated state by a careful! reversal of the action of the 
copying enzymes. 

Lebowitz What is the relation between the complexity of the beer can top and that of the 
Alhambra, or between a Rembrandt painting and a child's crayon drawing? 

Bennett The Alhambra is deeper, but maybe not much. Both contain evidence of the 
general scope of biological and cultural evolution, but the Alhambra may contain evidence 
of additional causal processes not necessary to produce beer cans, and not likely side-effects 
of any beer-can-producing civilization. 

Miller With regard to your notion of logical depth, what do you mean by "very long"? For 
what message length does your definition become well-defined? 

Bennett The messages need to be longer than the number of bits required to program one 
simple universal computer to simulate another, or to program the fairly simple a lgorithms 
implicit in the proof of the slow growth law, typically a few thousand bits, for depth to be 
reasonably robust. 

Cover You mentioned that algorithmic complexity is computer-independent. Is that true 
also of logical depth ? 

Bennett Less so. [As noted above in the printed version of the ta lk,] logical depth, being 
based on time complexity, suffers from the polynomial slop typical of time complexity 
results that attempt to be machine-independent over a reasonably broad range of machines. 

Unruh Isn't the function H(x) undefined since you can't know if the random program won' t 
stop. 

Bennett This makes H(x) uncomputable, but it is sti ll well defined. 

Geii-Mann I. l believe it would be helpful to include, in the list of systems characterized 
by what they can do rather than what they are, COMPLEX ADAPTIVE SYSTEMS that 
can adapt or evolve. 2. Charlie and his friends are typically interested in long messages, 
for which additive constants and polynomial functions may not matter much. If one 
cares about systems described by shorter messages, then it is desirable to know from the 
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beginning the describing system, the nature of the language it employs. the coarse-graining 
of what it is describing, and so forth. Only in that way can absolute quantities be defined, 
if at all. 3. Although it is not relevant to Charlie's argument, it should be noted that 
between a schema like DNA and a "phenotypic" object like a human being, a large 
amount of partly random information is introduced in the course of development, so that 
the individuality of a human being is much greater than that of the DNA. 

Lloyd Is the beer can pull tab as complex as the civilization that produced it? 
Bennett It depends on how much of the world's history was plausibly necessary to produce 

the beer can. It also depends on whether one defines depth using a purely serial machine 
such as a Turing machine, or a moderately parallel one, capable of simulating, without 
having to slow down, all the parallel dynamical processes going on in our civilization. 
In the latter case, the depth of civilization is only greater to the extent that it contains 
objects not plausible as byproducts of a beer-can-producing civilization, since plausible 
byproducts could be simulated at no extra cost. In the former case, the difference may be 
greater, reflecting the extent to which civilization contains evidence of causal processes not 
plausibly necessary to produce beer cans. 

Wootters In your definition of algorithmic entropy, is there a reason that you used the 
monkey formulation rather than the length of the shortest program that produces the 
desired output sequence? 

Bennett Including all the other programs besides the shortest makes only an additive 
constant difference in algorithmic entropy, but is necessary in the definition of depth, where 
the other programs, besides the shortest, help to determine the significance parameter. Also 
it is possible, though not proven, that there may be objects that are "deterministically deep 
but probabilistically shallow", in other words, objects that have a high fast probability, but 
no single small fast program. 

Z urek First a comment, then a question. Andy Albrecht was wondering about the relevance 
of such algorithmic considerations to the issue of "coarse grainings," and you have 
implicated me. I do not want to go into details here, so let me only mention that one 
way in which algorithmic randomness is helpful in this context is that it can be used to 
help clarify the well-known problem of the "simplicity" of coarse-grainings. It is often 
argued that a choice of coarse-graining is a privilege of the observer and, therefore, the 
entropy is defined with respect to it has an observer-dependent value. This is certainly true. 
Nevertheless algorithmic randomness could be used to prove that the observers which can 
communicate with ease will also agree on which coarse-grainings are simple. Therefore 
their estimates of entropy will agree to very high accuracy. Now for the question. Could 
you comment on the "thermodynamic depth" which has also been proposed as a measure 
of complexity? 

Bennett I meant to. Thermodynamic depth differs from the complexity measures I have 
been emphasizing here in that it depends on the history rather than just the state. The 
thermodynamic depth of the history of the igneous rock would, as I understand, be large, 
reflecting the large amount of dissipation that occurred in that history, whereas the logical 
depth of the rock is small, because of the ability to short-circuit this long history by a short 
computation. 

Albrecht What about operating system-dependence? There can be an operating system that 
prints out the human genome every time you press "H"? 
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Bennett If the operating system is treated as part of the program (external data fed into the 
computer) there is no problem. If it is treated as part of the compu ter, then that computer 
(with the whole human genome built in) could not fairly be called a simple computer. 
Even if one perversely decided to use it as the standard universal computer, algorithmic 
entropies defined on it would not differ from those defined on a simple Turing machine by 
more than a rather large addi tive constant, the information content of the human genome. 

Albrecht What is the complexity of the system after the bacteria have died ? 
Bennett Lower. More specifically it depends on how soon after they have died. Immediately 

afterward, it is probably pretty deep. When the bacteria have a ll decayed to an equil ibrium 
mixture of carbon dioxide, and water, etc., they are shallow again. 

Albrecht So complexity need not increase monotonically like entropy?. 
Bennett That is correct. 

Teitelboim Is our universe deeper than any other conceivable universe? 
Bennett I don' t know. I guess that there might be other universes with less wasted motion 

than ours, more efficient computations and less forgetting of deep things that have been 
computed before, but on the other hand my remark about deep objects contaminating 
their environment suggests that not much depth is ever destroyed. 
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