
Kolmogorov Amplification from Bell Correlation
Ämin Baumeler∗†, Charles Alexandre Bédard‡, Gilles Brassard‡§ and Stefan Wolf∗†
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Abstract—It was first observed by John Bell that quantum the-
ory predicts correlations between measurement outcomes that lie
beyond the explanatory power of local hidden variable theories.
These correlations have traditionally been studied extensively in
the probabilistic framework. A drawback of this perspective is
that one is then forced to use in a single argument the outcomes
of mutually-exclusive measurements. One of us has initiated an
alternative approach, invoking only data at hand, in order to
circumvent this issue. In this factual view, which is based on Kol-
mogorov complexity, we introduce mechanisms such as complexity
amplification. We establish that this functionality is realizable,
just as its probabilistic counterpart, hereby underlining that Bell
correlations are a precious information-processing resource.

I. MOTIVATION AND RESULTS

Correlations pioneered by Bell [1], so-called non-local,
challenge our classical conception of the world. Any attempt
at explaining the correlations of entangled states by a local
hidden variable theory runs into a dead end. The intrinsic-
randomness feature of non-local correlations has become in-
creasingly studied. For instance, violating a Bell inequality
was shown to be a way to expand [2] and amplify [3]
randomness when using untrusted quantum devices. But what
does one mean by randomness? With probabilities at the
very foundation of “Born-ruled” quantum theory, Shannon’s
notion of randomness — and of information — was a natural
measure.

Ironically, the very same who formalized axiomatic prob-
ability theory suggested [4] a way to free randomness —
and information — from its probabilistic context. Kolmogorov
complexity, also called algorithmic complexity, relates to the
data itself. It does not suppose any ensemble context nor
probabilistic process for that data to have come about. The
Kolmogorov complexity K(s) of a bit string s is the length
of the shortest program that outputs s on a fixed universal
computing device. In this picture, a patternless bit string is
said to be more random than one with structure that enables
its compression even if, from a probabilistic perspective, the
two strings have equal chances to be generated by the toss of
a fair coin if they have the same length.

To boil down non-local correlations to their simplest ex-
pression, Popescu and Rohrlich [5] proposed a model of a
non-signalling box that violates the CHSH inequality [6] max-
imally. Two parties, Alice and Bob, feed inputs a and b into
the box, which responds with outputs x and y, respectively,
where the condition a · b = x⊕ y holds (see Figure 1).
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Figure 1. PR Box: Alice inputs some a ∈ {0, 1}, and Bob inputs some b ∈
{0, 1}. The output of the box (x, y) ∈ {0, 1}2, where Alice receives x and
Bob receives y, is related to the inputs by a · b = x⊕ y.

In a probabilistic analysis of the PR box, where A, B, X
and Y are random variables taking value (a, b, x, y) ∈ {0, 1}4,
it is well-known, under non-signalling assumptions, that if all
input pairs have non-zero probability of occurring, then

PX|A=a,B=b(x) =
1/2 and PY |A=a,B=b(y) =

1/2 .

So, the outputs must be completely random and independent
from the inputs and hence fresh probabilistic randomness
is created. Taking a factual and context-free position was a
motivation for the first algorithmic analysis of the PR box [7],
[8], where bit strings play the role of random variables.

This paper first improves on the previous results with better
lower bounds on the complexity1 of the outputs when the
box is given incompressible inputs. Second, we show that
each output of the PR box is algorithmically independent
from the inputs, even under less restrictive conditions on the
inputs. As mentioned before, this independence relation is also
exhibited in the usual probabilistic analysis of the box. Third,
our most fundamental result is the complexity amplification
property, which informally states that the box must generate
some fresh complex strings, even if given infinite ressources.
Finally, we exhibit a case in which a compressible input pair is
fed to the algorithmic PR box, and an incompressible output
pair is returned.

II. COMPLEXITY AMPLIFICATION, INFORMALLY

Before going into the details of the model and the results, let
us discuss how non-locality, studied with the PR-box model,
once more challenges our classical conception of the world.
This time, it strikes at the classical computational models.

If one gives a string s to a box, which outputs a string t
such that K(t | s) is very large, say N bits, then one concludes

1Throughout this paper, “complexity” stands for “Kolmogorov complexity”.



that if the box is no more than a deterministic computational
model, its program must be of at least N bits.

However, one could think of the box as a probabilistic
computational model that has access to random bits. Com-
putation is physical, and with a deterministic classical theory,
the standard way to model probabilistic computation is via a
string λ that is considered random. Let us suppose that λ is an
infinite string that we supply to a deterministic computational
device of program size m. We could think of λ as an
encoding of an infinite random string, as well as arbitrarily
long or even infinitely long programs. If m� N , this is
no surprise, because to produce t from s, our deterministic
machine can use arbitrarily many bits of λ. Now, call Kλ(t | s)
the length of the shortest program for a fixed universal
machine to produce t from s, when it is given λ as oracle.
In the previous understanding of a probabilistic computing
device, we would expect Kλ(t | s) to be no more than m,
because all the complex procedure that permits to produce t
from s is encoded in λ. However, our results turn out to
show that, under certain conditions, the algorithmic PR box
satisfies Kλ(t | s) = K(t | s) = N � m. How can determin-
istic computational models, even if provided with infinite
ressources to make them probabilistic, explain this? What
comes out of the box is fresh algorithmic randomness since
it cannot be deterministically computed from any ressources
that the box has at hand.

III. MODEL

A. Kolmogorov complexity

The Kolmogorov complexity K(s) of a finite string s
is defined as the length of the shortest program that out-
puts s [4], [9]. For a meaningful definition, we have to select
an additively optimal universal Turing machine U to run all
programs. Such a machine can simulate any other with a
constant overhead. Thus, the complexity K(s) is defined as
the length of the shortest program for U to output s.

All strings discussed will be bit strings, i.e., the alpha-
bet is {0, 1}. For an infinite string a = a1a2 . . . , we use
a[n] = a1a2 . . . an to denote the first n bits of a. The Kol-
mogorov complexity K(a) of an infinite string a is defined as
a function

K(a) : N→ N
n 7→ K(a[n]) .

To each n, this function returns the length of the shortest
program for U that outputs a[n]. In order to describe the
function K(a) without caring about small oscillating patterns
in the complexity of a, or in that of the number n itself, we
equate K(a) with any function f that differs from K(a) by
at most a logarithmic additive term. That is, for a f : N→ N
we say that K(a) is asymptotic to f , and write K(a) ≈ f , if

K(a[n]) = f(n)±O(log n) .

One motivation for using the asymptotic behaviour of infi-
nite strings is the simplicity of the model; smaller order terms

such as constants cropping up from the specification of U and
even logarithmic terms can simply be ignored. This is useful
to even out different definitions one could have chosen. For
instance, K(a[n]) ≈ K(a[n] |n), because one could encode n
in a log n long program. Also the difference between plain
complexity and prefix complexity of a[n], being no more
than log n, makes this choice irrelevant. Note however that our
“≈” relation is meaningless when we consider strings with
complexity smaller than logarithmic, but this paper studies
strings in the linear-complexity regime.

An infinite string a is called incompressible if it satis-
fies K(a) ≈ n. In that case, the length of the shortest program
that outputs a differs from that of a program that simply
recites a only by at most logarithmic terms. In the same spirit,
a string a is called computable if K(a[n] |n) is O(1), i.e.,
there exists a constant-length program that outputs n bits of a
if n is provided.

The Kolmogorov complexity K(a, b, . . . , z) for multiple
finite bit strings a, b, . . . , z is the length of the shortest program
for U that outputs an encoding2 〈a, b, . . . , z〉 of all strings. For
infinite strings, K(a, b, . . . , z) is again a function defined by

K(a, b, . . . , z)(n)
def
= K(a[n], b[n], . . . , z[n]) .

The conditional Kolmogorov complexity K(a | b) is, for
all n, defined as the length of the shortest program for U
that outputs a[n] when given b[n]:

K(a | b)(n) def
= K

(
a[n] | b[n]

)
.

A bit string a is called pseudo-probabilistic if the only way
to compress it is by some coding of the alphabet, i.e., there
is no more structure to exploit for compression besides the
frequency bias of the bits appearing in the string. This only
makes sense if that frequency exists. Therefore, a pseudo-
probabilistic bit string a is such that

lim
n→∞

#1(a[n])

n
= α and K(a) ≈ h(α)n , (PP)

provided 0 < α < 1, where #1(a[n]) is the number of 1s in the
bit string a[n] and h(α) = −α log(α)− (1− α) log(1− α) is
the binary entropy of α. Pseudo-probabilistic strings can be
seen as a relaxation of incompressible strings corresponding
to a typical sequence of a memoryless (possibly unfair) coin
flip of fixed bias. An incompressible bit string can thus be seen
as a special pseudo-probabilistic string with α = 1/2. Pseudo-
probabilistic strings always have complexity of linear order
because we impose 0 < α < 1.

It is well known [9], [10] that the Kolmogorov complexity
satisfies a chain rule. For n-bit strings,

K(a[n], b[n]) = K(b[n]) +K(a[n] | b[n])±O(log n) ,

which means that the trivial recipe to compute the pair
(a[n], b[n]) by first computing one string (here, b[n]) and then

2 One can first define 〈·, ·〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ as an arbitrary
bijective computable mapping. Then, for an encoding of multiple strings,
one simply iterates the encoding. Since the encoding is computable, its
specification adds only a constant term to Kolmogorov complexity.



the other from the first is optimal up to logarithmic terms. For
infinite stings, the chain rule simplifies to

K(a, b) ≈ K(b) +K(a | b) .

Two bit strings a and b are called independent when

K(a | b) ≈ K(a) , (IND)

which informally states that knowing b does not help to
compress a. Thanks to the chain rule, the independence can
easily be seen to be symmetric.

Finally, we define the algorithmic mutual information

IK(a : b)
def
= K(b)−K(b | a) ,

which is positive since knowing a can only help in compress-
ing b, and symmetric up to logarithmic terms, i.e.,

IK(a : b) ≈ IK(b : a) .

B. Assumptions

Our model is about an algorithmic flavour of the PR box.
We consider quintuples (a, b, x, y, λ) of infinite bit strings,
where the strings within the quintuples satisfy some con-
ditions. The goal is then to make statements about such
quintuples. We call this the facts-only view, since no choices
and no probabilities are involved; only the data. We refer
to a, b as the inputs, and to x, y as the outputs of Alice and
Bob respectively. First, we assume all (a, b, x, y) to satisfy
the bit-by-bit PR condition:

a · b = x⊕ y , (PR)

which means that for all i: ai · bi = xi ⊕ yi.
Alice’s and Bob’s boxes should be seen as computing

devices, which share an a priori resource λ ∈ {0, 1}ω (see
Figure 2). This λ could be an infinite random string, it could
be an infinitely long program for each of them, possibly
correlated to coordinate their strategies. It could also be an
oracle that allows their devices to go higher on the arithmetic
hierarchy. Thanks to Hilbert’s hotel, it could even be an
encoding of all of these.

A λ B

x y
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Figure 2. Model of an algorithmic PR box represented by Alice’s and Bob’s
computing devices A and B, to which is supplied the oracle λ as a shared
ressource.

For a finite string s, we define Kλ(s) to be the length of
the shortest program for U that produces s when it has access
to λ as an oracle. For an infinite string a, Kλ(a) becomes
a function N→ N defined by Kλ(a)(n) = Kλ(a[n]). Notice
that we write Kλ(·) rather than K(· |λ) because for each n,
the whole λ is given to the computing device as opposed to
only λ[n].

We impose that no matter how powerful the shared
ressource λ is, it does not permit a shorter description of the
input pair a, b. Therefore, the inputs are oracle-independent
of λ in the sense that

Kλ(a, b) ≈ K(a, b) . (λ-IND)

Another condition the strings (a, b, x, y, λ) have to satisfy
is no-signalling:

Kλ(x | a, b) ≈ Kλ(x | a) ,
Kλ(y | a, b) ≈ Kλ(y | b) .

(NS)

Inasmuch as no-signalling in a probabilistic theory means
that knowing Bob’s input cannot help Alice to predict her
output better; in the factual case, one simply changes “predict”
by “compute”, and understands that “better” is measured in
program length. Furthermore, we consider only those quintu-
ples for which the strings a and b are independent (IND),
and a, b are pseudo-probabilistic (PP) with an asymptotic
frequency of 1s of α and β, respectively. We define S as the set
of objects (a, b, x, y, λ) such that (PR), (λ-IND), (NS), (IND)
and (PP) hold. In the following, we shall make statements
about quintuples from the set S.

IV. COMPLEXITY AMPLIFICATION, FORMALLY

In this section, we state and discuss two lemmas, whose
proofs are relegated to Section V. Then, we state and prove
our main theorem on complexity amplification. Finally, we
mention a consequence of the theorem.

Lemma 1. For all (a, b, x, y, λ) ∈ S,

Kλ(y) ≈ IKλ(x : y | a) +Kλ(a · b | a) .

This lemma improves on the result of ref. [8], in which it
was shown that if the box was provided completely random
and independent strings a and b, i.e., with K(a, b) ≈ 2n,
then K(y) & n/4. Indeed, in this case Lemma 1 implies that

K(y) & K(a · b | a) ≈ n

2
.

To see this, observe that (a · b)i = 0 whenever ai = 0
and (a · b)i = bi whenever ai = 1. This last case leads to
an incompressible substring of b, even given a. Since a is
incompressible, each case happens on an asymptotic propor-
tion of 1/2. The former case leaves us no complexity, but the
latter case leaves us with maximal complexity. Note that (PP)
is not needed to prove this lemma.

Lemma 2. For all (a, b, x, y, λ) ∈ S,

Kλ(y) ≈ Kλ(y | b) .

Lemma 2 links with the probabilistic study of the PR box, in
which the distribution of the output does not depend on the
input. Here, we have an algorithmic analogue: The length of a
program for the output string y does not change if it is given
its input b.

We say that a process amplifies complexity by an asymptotic
term t(n) if the joint input-output complexity is larger than the



complexity of the inputs by a t(n) term. By the chain rule,
this is equivalent to K(Out|In) ≈ t(n). We now show that the
non-local box amplifies complexity by an asymptotic linear
term, when it is given pseudo-probabilistic and independent
inputs. It does so even if supplied with an arbitrary λ that
does not provide signalling capabilities. What comes out of
the box cannot be produced even by an infinitely long shared
program (encoded in λ) run on the inputs.

Theorem 1 (Complexity amplification).
For all (a, b, x, y, λ) ∈ S,

Kλ(x, y | a, b) & h(αβ)n .

Proof. Thanks to the chain rule,

Kλ(x, y | a, b) ≈ Kλ(y | a, b) +Kλ(x | a, b, y) .

Since x can be computed by a, b and y, the last term vanishes,
and by (NS) the first term can be reduced to Kλ(y | b). The
amplification of the box is therefore as much as Kλ(y | b) and
the statement of the theorem boils down to bounding this term
by h(αβ)n. From Lemma 2, Kλ(y | b) ≈ Kλ(y). We shall
now show that Kλ(y |x) ≈ h(αβ)n and the conclusion will
follow from Kλ(y) & Kλ(y | x).
Observe that

Kλ(y | x) ≈ Kλ(x⊕ y | x)
≈ Kλ(x | x⊕ y) +Kλ(x⊕ y)−Kλ(x)

= Kλ(x | a · b) +Kλ(a · b)−Kλ(x) . (1)

But, by acquiring information (twice), no-signalling and the
symmetric statement of Lemma 2,

Kλ(x) & Kλ(x | a · b) & Kλ(x | a, b) ≈ Kλ(x | a) ≈ Kλ(x) ,

so the first and third terms of Eq. (1) cancel out. Since a and b
are independent and pseudo-probabilistic, the a · b string is
also pseudo-probabilistic with an asymptotic proportion of 1s
of αβ. Therefore,

Kλ(y | x) ≈ Kλ(a · b) ≈ h(αβ)n .

We conclude this section with a special case in which a non-
maximally complex input pair gets amplified into a maximally
complex output pair. Take α and β such that αβ = 1/2
and h(α) + h(β) = 1 + ε for arbitrarily small ε by choosing α
or β sufficiently close to 1. In this case, the complexity of the
pair of inputs is K(a, b) ≈ h(α)n+ h(β)n ≈ (1 + ε)n. But
then, the complexity of the outputs is

K(x, y) ≈ K(x) +K(y | x)
& K(x | y) +K(y | x)
≈ h(αβ)n+ h(αβ)n

≈ 2n .

So we find explicit cases in which the PR box is given
just a little more than n complexity, and spits out 2n com-
plexity. In sharp contrast, a maximally complex output pair

cannot be obtained from a maximally complex input pair
(i.e., K(a, b) ≈ 2n and hence α = β = 1/2). Indeed,

K(x, y) ≈ K(x) +K(y |x)
≈ K(x) + h(αβ)n

. (1 + h(1/4))n ,

is strictly smaller than 2n.

V. PROOFS

A. Proof of Lemma 1

Observe first that (NS) and (PR) imply

Kλ(x | a) ≈ Kλ(x | a, b) ≈ Kλ(y | a, b) ≈ Kλ(y | b) .

On the one hand, acquiring information leads to

Kλ(y | b) ≈ Kλ(x | a)
= Kλ(a · b⊕ y | a)
& Kλ(a · b⊕ y | a · b, a)
≈ Kλ(y | a · b, a) ;

but on the other hand, no-signalling and forgetting information
imply

Kλ(y | b) ≈ Kλ(y | a, b)
. Kλ(y | a · b, a) .

Therefore, Kλ(y | b) ≈ Kλ(y | a · b, a). This is useful in

Kλ(x, y | a) ≈ Kλ(x⊕ y, y | a)
≈ Kλ(x⊕ y | a) +Kλ(y | a, x⊕ y)
= Kλ(a · b | a) +Kλ(y | a, a · b)
≈ Kλ(a · b | a) +Kλ(y | b)
≈ Kλ(a · b | a) +Kλ(x | a) .

Hence,

Kλ(y | a, x) ≈ Kλ(x, y | a)−Kλ(x | a) ≈ Kλ(a · b | a) .

Also, expressing Kλ(a, b, y) in two different ways, namely,

Kλ(a, b, y) ≈ Kλ(a, b) +Kλ(y | a, b)
≈ Kλ(a) +Kλ(b) +Kλ(y | b)

and

Kλ(a, b, y) ≈ Kλ(b) +Kλ(y | b) +Kλ(a | y, b) ,

we conclude that Kλ(a | y, b) ≈ Kλ(a). This implies in par-
ticular that Kλ(a | y) ≈ Kλ(a) and by symmetry of the
independence relation, that Kλ(y | a) ≈ Kλ(y).

We complete the proof of the lemma by observing that

Kλ(y) ≈ Kλ(y | a)
≈ Kλ(y | a)−Kλ(y | a, x) +Kλ(a · b | a)
≈ IKλ(x : y | a) +Kλ(a · b | a) .

Notice that until now, the pseudo-probabilistic property of
the inputs has not been used.



B. Proof of Lemma 2

We develop IKλ(x : y | a) in a different expression and start
using the (PP) hypothesis:

IKλ(x : y | a) ≈ Kλ(x | a)−Kλ(x | a, y)
≈ Kλ(y | b)−Kλ(x⊕ y | a, y)
= Kλ(y | b)−Kλ(a · b | a, y) .

Now, we know (a · b)i = 0 whenever ai = 0, which happens
on an asymptotic proportion of 1−α of the bits, and we know
on which because we are given a. But whenever ai = 1, which
happens on an asymptotic proportion of α of the bits, we
know (a · b)i = bi. Therefore, the second term is asymptotic
to αKλ(b | a, y).

Kλ(b | a, y) ≈ Kλ(a, b, y)−Kλ(a, y)

≈ Kλ(a) +Kλ(b) +Kλ(y | a, b)
−Kλ(a)−Kλ(y)

≈ Kλ(b) +Kλ(y | b)−Kλ(y) .

We shall now put this together with Lemma 1. For the
same reason as before, Kλ(a · b | a) ≈ αKλ(b | a) and by
independence and the pseudo-probabilistic property of b, this
is asymptotic to αh(β)n. Therefore,

Kλ(y) ≈ IKλ(x : y | a) + αh(β)n

≈ Kλ(y | b)− α(Kλ(b) +Kλ(y | b)−Kλ(y))

+αh(β)n .

Simplifying and rewriting, we get

(1− α)Kλ(y) ≈ (1− α)Kλ(y | b) .

The conclusion follows from α 6= 1.

VI. CONCLUSIONS

Non-local correlations, such as those arising from the PR
box, have traditionally been studied in the probabilistic realm.
There, probability distributions are assigned to inputs, pro-
cesses and outputs. This has lead to a series of interesting
statements on non-local correlations from a cryptographic as
well as foundational point of view, e.g., randomness am-
plification and expansion were shown to be possible. This
probabilistic view has also been employed to study quantum
correlations obtained by two or more parties measuring an
entangled quantum state. However, the necessary settings of
the measurement apparatuses to exhibit these correlations from
such states represent non-commuting observables. Now, if one
describes the settings required to arrive at such correlations by
a probability distribution, then one ends up with statements
where non-commuting observables appear simultaneously —
yet, this is prohibited by quantum theory itself. This means
that the results drawn from the probabilistic view are based
on “infuturabili” or counterfactuals: The statements talk about
“what would have happened if something had happened that
did not happen” [11].

Contrary to this counterfactual view, we advocate the facts-
only perspective: Data from a potential experiment are con-
sidered without using any probability distributions — and
we aim at talking about what actually happened, without
referring to any alternatives. In this view, we model series
of measurement settings and results by bit strings. Hence,
we can make statements about the relations among such bit
strings. In the study performed here, we look at tuples of bit-
strings that are possible from a PR-box setup and conclude
(under appropriate conditions) that the PR box must amplify
Kolmogorov complexity.

An open question is how this result can be extended beyond
the PR box to settings that arise in nature: quantum correla-
tions cropping up from measurements of entangled states. One
approach to adapt this work to the quantum world would be
by considering chained Bell-inequalities or a pseudo-telepathy
game. Another direction that should be investigated is to
tighten the analysis with a relation “≈” defined as differing
by an O(1) term. For this, prefix Kolmogorov complexity will
be necessary.
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