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Cost of Exactly Simulating Quantum Entanglement with Classical Communication
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We investigate the amount of communication that must augment classical local hidden variable
models in order to simulate the behavior of entangled quantum systems. We consider the scenario
where a bipartite measurement is given from a set of possibilities and the goal is to obtain exactly
the same correlations that arise when the actual quantum system is measured. We show that, in the
case of a single pair of qubits in a Bell state, a constant number of bits of communication is always
sufficient—regardless of the number of measurements under consideration. We also show that, in the
case of a system ofn Bell states, a constant times2n bits of communication is necessary.

PACS numbers: 03.67.Hk, 03.67.Lx
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Bell’s celebrated theorem [1] shows that certain sc
narios involving bipartite quantum measurements res
in correlations that are impossible to simulate with
classical system if the measurement events are space
separated. If the measurement events are timelike se
rated, then classical simulation is possible, at the expe
of some communication. Our goal is to quantify the r
quired amount of communication.

This is part of the broader question of how quantum i
formation affects various resources required to perfo
tasks in information processing. A two-way classic
communication channel between two separated par
can be regarded as aresource, and a natural goal is
for two parties to produce classical information satisf
ing a specific stochastic property. One question is,
the parties have ana priori supply of quantum entangle-
ment, can they accomplish such goals with less clas
cal communication than necessary in the case where t
a priori information consists of only classical probabilis
tic information? And, if so, by how much? Our questio
is, to what extent does the fundamental behavior of an
tangled quantum system itself provide savings, in terms
communication, compared with classical systems?

Imagine a scenario involving two “particles” that ma
have been “together” (and interacted) at some previo
point in time, but are “separated” (in a sense whic
implies that they can no longer interact) at the prese
time. Suppose that a measurement is then arbitrarily
lected and performed on each particle (not necessa
the same measurement on both particles). If the u
derlying physics governing the behavior of the syste
is “classical” then the behavior of such a system cou
be based on correlated random variables (usually ca
“local hidden variables”), reflecting the possible resu
of a previous interaction. If no communication can o
cur between the components at the time when the m
surements take place then this imposes restrictions on
possible behavior of such a system. In fact, if the u
derlying physics governing the behavior of the system
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“quantum” (in the sense that it can be based on entang
quantum states, rather than correlated random variab
then behavior can occur that is impossible in the class
case. This is a natural way of interpreting Bell’s the
rem [1,2]. To formalize—and later generalize—this, w
shall definequantum measurement scenarios and (classi-
cal) local hidden variable schemes.

Define a quantum measurement scenario as a triple
of the form �jC�AB, MA, MB�, wherejC�AB is a bipartite
quantum state,MA is a set of measurements on the fir
component, andMB is a set of measurements on th
second component.

It is convenient to parametrize the simplest von Ne
mann measurements on individual qubits by points on
unit circle. (More general von Neumann measuremen
which involve complex numbers, are considered later
this paper.) Let the parameterx [ �0, 2p� denote a mea-
surement with respect to the operator

R�x� �

√
cosx sinx
sinx 2 cosx

!
(1)

whose eigenvectors are cos� x
2 � j0� 1 sin� x

2 � j1� and
sin� x

2 � j0� 2 cos� x
2 � j1�.

Consider the case of a pair of qubits in the Bell sta
jF1�AB �

1
p

2
j0� j0� 1

1
p

2
j1� j1�. (Our results are writ-

ten for such states, but can be modified to apply to a
of the other Bell states, including the Einstein-Podolsk
Rosen singlet statejC2�AB �

1
p

2
j0� j1� 2

1
p

2
j1� j0�.)

Let x, y [ �0, 2p� be the respective measurement p
rameters of the two components and leta, b [ �0, 1�
be the respective outcomes. Then the joint probabi
distribution of these outcomes is given as

Pr�b � 0� Pr�b � 1�

Pr�a � 0� 1
2 cos2� x2y

2 � 1
2 sin2� x2y

2 �

Pr�a � 1� 1
2 sin2� x2y

2 � 1
2 cos2� x2y

2 �
.
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Two simple but noteworthy examples of bipartite quan-
tum measurement scenarios with the Bell state jF1�AB

are as follows: Example 1, �jF1�AB, MA, MB�, where
MA � MB � �0, p

2 �. Example 2, �jF1�AB, MA, MB�,
where MA � �2p

8 , 3p

8 � and MB � 2MA � �p

8 , 2 3p

8 �.
In both examples, each individual outcome is a uniformly
distributed bit regardless of the measurements. In Ex-
ample 1, if the two measurements are the same then the
outcomes are completely correlated, whereas if the two
measurements are different, the outcomes are completely
independent. In Example 2, the two outcomes are equal
with probability sin2� p

8 � if x � 2y � 1
3p

8 , and with
probability cos2� p

8 � otherwise. These examples are in-
teresting in the context of local hidden variable schemes,
which are defined next.

Intuitively, we are interested in classical devices that
simulate bipartite quantum measurement scenarios to vary-
ing degrees, and such devices are naturally explained as
local hidden variable schemes. To define a local hidden
variable scheme, it is convenient to view it as a two-party
procedure whose execution occurs in two stages: a prepa-
ration stage and a measurement stage. For ease of refer-
ence, we call the two parties Alice and Bob. During the
preparation stage, local hidden variables u for Alice and
y for Bob are determined by a classical random process.
During this stage, arbitrary communication can occur be-
tween the two parties, so u and y may be arbitrarily cor-
related. During the measurement stage, measurements x
and y are given to Alice and Bob, respectively, who pro-
duce outcomes a � A�x, u� and b � B�y, y�, respectively.
During this stage, no communication is permitted between
the parties, which is reflected by the fact that the value of
A�x, u� is independent of the value of y (and vice versa).

A local hidden variable scheme simulates a measure-
ment scenario �jC�AB, MA, MB� if, for any x [ MA and
y [ MB, the outputs produced by Alice and Bob (namely,
a and b, respectively) have exactly the same bivariate dis-
tribution as the outcomes of the quantum measurement sce-
nario as dictated by the laws of quantum physics.

The measurement scenario in Example 1 is easily simu-
lated by the following local hidden variable scheme. Let
u and y each consist of a copy of the same uniformly
distributed two-bit string. Then let Alice and Bob each
output the first bit of this string if their measurement is 0
and the second bit if their measurement is p

2 . On the other
hand, for the measurement scenario of Example 2, it turns
out that there does not exist a local hidden variable scheme
that simulates it [2].

Now, we consider a more powerful classical instru-
ment for simulating measurement scenarios. Define a local
hidden variable scheme augmented by k bits of communi-
cation as follows. Informally, it is a local hidden vari-
able scheme, except that the prohibition of communication
between the parties during the measurement stage is re-
laxed to a condition that allows up to k bits of communica-
tion. More formally, a local hidden variable scheme aug-
mented by k bits of communication has a preparation stage
where random variables u and y for Alice and Bob are
determined and during which arbitrary communication is
permitted between the two parties. Then there is a mea-
surement stage which begins by measurements x and y be-
ing given to Alice and Bob, respectively. One party then
computes a bit (as a function of his/her measurement and
local hidden variables) which is sent to the other party.
This constitutes one round of communication. Then, again
one party (the same one or a different one) computes a bit
(as a function of his/her measurement, local hidden vari-
ables, and any data communicated from the other party at
previous rounds) and sends it to the other party. This con-
tinues for k rounds, after which Alice and Bob output bits
a and b, respectively.

For example, for the measurement scenario of
Example 2, a local hidden variable scheme augmented
with one single bit of communication can simulate it.
This is a consequence of the following more general
result, whose easy proof is left as an exercise.

Theorem 1.—For any quantum measurement scenario
�jC�AB, MA, MB�, there exists a local hidden variable
scheme augmented with log2�jMAj� bits of communication
(from Alice to Bob) that exactly simulates it.

We shall see that in some cases the upper bound of
theorem 1 is asymptotically tight while in other cases it
is not. In what follows, we focus on the case of a single
Bell state and the case of n Bell states, and provide a new
upper or lower bound in each case.

Consider the case of a single Bell state jF1�AB �
1
p

2
j0� j0� 1

1
p

2
j1� j1�, but where the sizes of MA and

MB may be arbitrarily large. By theorem 1, we obtain
only an upper bound of log2�jMAj� bits for the amount of
communication necessary for an augmented local hidden
variable scheme to simulate it. In the case where MA and
MB are each the entire interval �0, 2p�, this communication
upper bound would be infinite. If only a finite number k of
bits of communication are permitted, then one alternative
that might seem reasonable is for Alice to send x0, a
k-bit approximation of x, to Bob. The protocol for Alice
and Bob would be along the lines of the one implicit in
theorem 1, but using x0 in place of x. This would clearly
not produce an exact simulation for a general x [ �0, 2p�,
but it would produce an approximation that improves as
k increases. Is this the best that can be done with k
bits of communication? The next theorem demonstrates
that it is possible to obtain an exact simulation for any
x, y [ �0, 2p� with only a constant number of bits of
communication.

Theorem 2.—For the quantum measurement scenario
�jF1�AB, MA, MB� with jF1�AB �

1
p

2
j0� j0� 1

1
p

2
j1� j1�

and MA � MB � �0, 2p�, there exists a local hidden vari-
able scheme augmented with four bits of communication
(from Alice to Bob) that exactly simulates it.
1875
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Proof.—The local hidden variables are c [ �0, 1� and
u [ �0, 3p

5 �, and both are uniformly distributed.
For j [ �0, 1, . . . , 9�, define aj � jp

5 . It is useful
to view a0, a1, . . . , a9 as ten equally spaced points on
the unit circle. Define the jth a slot as the interval
�aj , a� j11�mod 10�. Also, define b0 � a0 1 u, b1 �
a3 1 u, and b2 � a6 1 u, and g0 � a5 1 u, g1 �
a8 1 u, and g2 � a1 1 u (where the addition is under-
stood to be modulo 2p). Define the jth b slot as the
interval �bj , B� j11�mod 3�, and the jth g slot as the interval
�gj , g� j11�mod 3�.

The protocol starts by Alice sending Bob information
specifying the a slot, b slot, and g slot in which x is
located. Note that these slots partition the unit circle into
sixteen intervals, so Alice can convey this information by
sending four bits to Bob. Then Alice outputs the bit c.

The full procedure for Bob is summarized below, but,
in order to explain the idea behind it, it is helpful to first
consider the special case where y is in the second a slot
and the a-slot number of x is within two of that of y (in
other words, the a-slot number of x is in �0, 1, 2, 3, 4��.
Note that these conditions depend on the values of x and y
only (and not on the values of the local hidden variables).
Also, these conditions imply that jx 2 yj #

3p

5 . In this
case, Bob does the following. If the b slots of x and y
are the same then Bob outputs c. If the b slots of x and
y are different then exactly one bk is between x and y.
Let u � jy 2 bkj. Bob’s procedure is to output c with
probability 1 2

3p

10 sin�u�.
To analyze the stochastic behavior of this procedure

(still in the special case), let r � jx 2 yj and note that
the probability of x and y being in different b slots is 5r

3p .
Also, conditional on x and y being in different b slots, the
probability distribution of the position of the bk between
x and y is uniform. Therefore,

Pr�a � b� �

√
1 2

5r
3p

!
1

√
5r
3p

! √
1
r

!

3
Z r

0

"
1 2

3p

10
sin�u�

#
du

�
1
2

�1 1 cos�r�� � cos2

√
r
2

!
, (2)

which is exactly what is required.
The procedure for Bob in the above special case can

be generalized to apply to the other possible cases by
considering various similarities and symmetries among
the cases. Once Bob obtains information from Alice that
specifies the a slot, b slot, and g slot of x, he simply
has to apply the following procedure, shown below in
pseudocode:

If the difference between the a-slot numbers of x
and y is more than 2, then

set y to y 1 p
1876
set c to :c .

If the a-slot number of y is in �7, 8, 9, 0, 1�, then

set b0, b1, b2 to g0, g1, g2 .

If x and y are in the same b-slot, then

output c .

Otherwise, there exists a bk between x and y

set u to jy 2 bkj

output c with probability 1 2
3p

10 sin�u� . �

Theorem 2 applies to all measurements with respect to
operators of the form given in Eq. (1). The most general
possible von Neumann measurement on an individual
qubit can be parametrized by �x, x0� [ �0, 2p� 3 �0, 2p�
and taken with respect to the operator

S�x, x0� �

√
cosx e2ix0

sinx
eix0

sinx 2 cosx

!
(3)

whose eigenvectors are cos� x
2 � j0� 1 eix0

sin�p

2 � j1� and
sin�p

2 � j0� 2 eix0

cos� p

2 � j1�. If Alice and Bob make such
measurements with respective parameters �x, x0� and
�y, y0�, and a and b are the respective outcomes, then
Pr�a � 0� � Pr�b � 0� �

1
2 and

Pr�a � b� � cos2

√
x0 1 y0

2

!
cos2

√
x 2 y

2

!

1 sin2

√
x0 1 y0

2

!
cos2

√
x 1 y

2

!
. (4)

Theorem 3.—For the quantum measurement scenario
�jF1�AB, MA, MB� with jF1�AB �

1
p

2
j0� j0� 1

1
p

2
j1� j1�

and MA � MB � �0, 2p� 3 �0, 2p�, there exists a local
hidden variable scheme augmented with eight bits of
communication (from Alice to Bob) that exactly simu-
lates it.

Proof.—The local hidden variable scheme consists of
two executions of the four-bit protocol of theorem 2.
In the first execution, Alice and Bob use measurement
parameters x0 and 2y0 to obtain output bits a0 and b0 such
that

Pr�a0 � b0� � cos2

√
x0 1 y0

2

!
. (5)

In the second execution, Alice and Bob use measurement
parameters �21�a0

x and �21�b0

y to obtain their final
output bits a and b, respectively. Note that

Pr�a � b� �

8><
>:

cos2
≥

x2y
2

¥
if a0 � b0

cos2
≥

x1y
2

¥
if a0 fi b0

, (6)

which, combined with Eq. (5), implies Eq. (4). �
Consider the tensor product of jF1�AB with itself n

times, i.e., the case of n Bell states. This state can
be written as jF1�≠n

AB �
1

p
2n

P
i[�0,1�n ji� ji�. Theorem 3
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implies that any n independent von Neumann measure-
ments performed on the n Bell states can be simulated by
a local hidden variable scheme augmented with 8n bits of
communication. In the case of coherent measurements on
such a state, the exact simulation cost can be much larger,
as shown by the following theorem.

Theorem 4.—There exists a pair of sets of measure-
ments, MA and MB (each of size 22n

) on n qubits, such that,
for the quantum measurement scenario �jF1�≠n

AB, MA, MB�
with jF1�≠n

AB �
1

p
2n

P
i[�0,1�n ji� ji�, any local hidden vari-

able scheme must be augmented with a constant times 2n

bits of communication in order to exactly simulate it.
Proof.—The proof is based on connections between a

measurement scenario and a communication complexity
problem examined in [3]. We begin by defining a set of
22n

measurements, which we call Deutsch-Jozsa measure-
ments, due to their connection with the algorithm in [4].
The measurements are parametrized by the set �0, 1�2n

. For
a parameter value z [ �0, 1�2n

, we index the bits of z by the
set �0, 1�n. That is, for i [ �0, 1�n, zi denotes the “ ith” bit
of z. The measurement on n qubits corresponding to z [
�0, 1�2n

is easily described as two unitary transformations
followed by a measurement in the computational basis.
The first unitary transformation is a phase shift that maps
ji� to �21�zi ji� for each i [ �0, 1�n. The second unitary
transformation is the n-qubit Hadamard transformation,
which maps ji� to

1
p

2n

X
j[�0,1�n

�21�i?jjj� , (7)

where i ? j is the inner product of the two n-bit strings
i and j (that is, i ? j � i0j0 1 i1j1 1 · · · 1 in21jn21�.
These two unitary transformations are followed by a
measurement in the computational basis �ji�:i [ �0, 1�n�,
yielding an outcome in �0, 1�n.

Set MA � MB � �0, 1�2n
, the set of Deutsch-Jozsa mea-

surements. It is straightforward to show that, for x [ MA

and y [ MB, the joint probability distribution of the out-
comes a and b satisfies the following properties:

(1) If x � y, then Pr�a � b� � 1.
(2) If the Hamming distance between x and y is 2n21,

then Pr�a � b� � 0.
We now reduce a communication complexity problem

in [3] to the problem of designing an augmented local
hidden scheme that satisfies properties 1 and 2. The
communication complexity problem (called EQ0 in [3])
is a restricted version of the “equality” problem, and is
defined as follows. Alice and Bob get inputs x, y [
�0, 1�2n

, respectively, and one of them (say, Bob) must
output 1 if x � y and 0 if the Hamming distance between
x and y is 2n21. The output of Bob can be arbitrary
in all other cases. In [3], it is proven that any classical
protocol that exactly solves this restricted equality problem
requires c2n bits of communication for some constant
c . 0 and all sufficiently large n. The proof is based on
a combinatorial result in [5]. Suppose that there exists a
local hidden variable scheme augmented with f�n� bits of
communication that simulates the measurement scenario
�jF1�≠n

AB, MA, MB�. One can then use this to construct
a protocol for restricted equality with f�n� 1 n bits of
communication as follows. Alice and Bob first execute
the protocol for �jF1�≠n

AB, MA, MB� and then Alice sends
her output a to Bob, who outputs 1 if a � b and 0
if a fi b. It follows that f�n� 1 n $ c2n, so f�n� $

c2n 2 n $ c02n, for some c0 . 0 and sufficiently large n.
The theorem extends to all n $ 1, possibly using a smaller
constant c00, because it follows from [2] that example 2
cannot be simulated without communication. �

In conclusion, we have shown how to exactly simulate
the behavior of a bipartite entangled quantum system
consisting of two qubits prepared in a Bell state: eight bits
of classical communication suffice to reproduce exactly the
correlations that arise when the qubits are independently
subjected to arbitrary von Neumann measurements. In
contrast, the exact simulation of the behavior of a bipartite
quantum system consisting of n Bell states requires an
amount of communication that is exponential in n.

Similar work was carried out independently by Michael
Steiner [6]. Using a different technique, he showed how
1.49 classical bits of communication suffice on the average
for the quantum measurement scenario �jF1�AB, MA, MB�
with jF1�AB � 1

p
2
j0� j0� 1

1
p

2
j1� j1� and MA � MB �

�0, 2p� that we consider in theorem 2. It follows from the
techniques used in our proof of theorem 3 that 2.98 bits of
classical communication suffice on the average to simulate
the behavior of arbitrary von Neumann measurements
carried out independently on two qubits prepared in a Bell
state. Although this is better than the eight bits that we
need in this Letter, Steiner’s technique imposes no upper
limit on the number of bits that need be communicated in
the worst case.
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