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6.1 Introduction 

Aristotle's analysis of the world in terms of cause and effect formed a cornerstone 
of Renaissance thought. Efficient cause explained the sinfulness of the world as an 
effect of Adam's fall, while final cause justified religious and political institutions 
as 'caused' by God's intentions for the future of mankind. The Enlightenment's 
questioning of religious and social institutions robbed arguments by final cause of 
much of their force. Hume denied final cause, and regarded efficient cause as arising 
simply from the human habit of calling 'cause' the first in time of two events that 
occur in constant conjunction (Hume 1739). By the beginning of the current century, 
the intellectual status of causal reasoning had receded to the point that Russell could 
write (Russell 1929), "The Jaw of causality, I believe, like much that passes muster 
among philosophers, is a relic of a bygone age, surviving, like the monarchy, only 
because it is erroneously supposed to do no harm." 

Russell's conviction of the anachronistic nature of causal law came from well-
established 19th century ideas in physics: the fundamental description of the world 
was given by Hamiltonian evolution ; the behaviour of Hamiltonian systems over 
a given time interval was determined equally by conditions given at the beginning 
or at the end of the interval ; the particular Hamiltonians that seemed to describe 
physical systems were quadratic in momentum, and so were invariant under the 
transformation t -- - L. In this view, the underlying dynamics of the world 
were completely time symmetric, and temporal and causal asymmetry were merely 
artifacts of our inability to perceive the true microscopic workings of the world 
around us, an inability that forced us to rely on statistical descriptions. 

The greater the explanatory power of a prevalent physical model, the greater 
is the temptation to regard that model's picture of the world as fundamental. 
Russell's dismissal represents a low water mark in causal and statistical reasoning. 
In the twentieth century, the successes of statistical and quantum mechanics have 
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lent legitimacy to probabilistic reasoning, to the extent that most physicists now 
regard the deterministic evolution of classical mechanics as an approximation, and 
the stochastic natures of quantum mechanics and of chaos as fundamental. With 
the growing importance of statistical techniques has come a resurgent interest in 
causality and its relationship to statistics, exemplified by the work of Reichenbach 
(Reichenbach 1956). Causal reasoning, like the monarchy, survived both Russell and 
his remark. 

In the present work, the only requirement made of a cause is that under some 
circumstances, variation in the outcome of the cause produces a correlated variation 
in the outcome of the effect. In essence, the cause-effect relationship can be thought 
of as a one-way communications channel through which the cause sends information 
that the effect receives. The basic idea here is that causal connection implies the 
possibility of statistical correlation, while the absence of causal connection implies 
the absence of correlation. If two events a re correlated, then either one has an effect 
on the other, or the two have a common cause in their past. By extending these 
ideas to many events, one arrives at a method for deriving patterns of statistical 
dependence and independence from the causal relations between the events. 

6.2 Correlation and Information 

This programme may be made formal as follows. Suppose that the statistical 
information possessed about a set of events A, B, C, ... takes the form of a joint 
probability distribution p(abc . . . ) over the possible outcomes a, b, c, ... of A, B, C, .... 
From this joint distribution, one can derive various marginal distributions, such 
as p(ab) = L:c ... p(abc .. . ), the probability for A to have outcome a and B to have 
outcome b, and conditional probability distributions, such as p(aib) = p(ab) / p(b), 
the probability that the outcome of A is a given that the outcome of B is b. 

Two events A and B are correlated if fixing the outcome of B can change 
the probabilities for the outcome of A, that is, if p(alb) =F p(a) for some a, b. 
Note that p(alb) =F p(a) if and only if p(bia) =F p(b): correlation is a symmetric 
relationship. On the one hand, if you throw a rock at a window, there is a better 
than normal chance that the window will break. On the other hand, if a window 
breaks, there is a better than normal chance that someone has thrown a rock at 
it. The degree of correlation between events can be measured using information 
theory (Shannon and Weaver 1949). Define !(A) = - L:ap(a) log2 p(a); !(A) is 
the average number of bits of information required to specify the outcome of A. 
If the outcome of B is fixed , the average number of bits required to specify the 
outcome of A is l(AIB) = L:bp(b)( - L:aP(aib) log2 p(alb)) =!(AB) - I(B), where 
/(AB)=- L:ab p(ab) log2 p(ab) is the average number of bits required to specify 
the outcome of both A and B. The degree of correlation between A and B can 
be measured by how much knowledge of the outcome of B reduces the amount 
of information required to specify the outcome of A: the corresponding quantity, 
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l (A;B) = /(A) - I(A IB) = l(A ) + l(B)- !(AB), is called the mutual information 
between A and B. Note that I (A; B ) = I (B; A): the amoun t that one finds out about 
A by knowing B is equal to the amount that one finds out about B by knowing A. 
Note also that I (A; B ) ;;:::: 0, with equality if and only if p(aib) = p(a) for all a, b. lf 
I (A; B) = 0, then A and B are said to be independent: knowing the outcome of B 
imparts no knowledge about the outcome of A. 

Mutual information was originally defined in communications theory, to measure 
the capacity of comm unication channels. Regarding the cause-effect relationship 
as such a channel, one may take the mutual information between cause and effect 
as a measure of the amount of information that the effect is receiving from the 
cause. In fact, this is strictly true only when an event has only one cause. When an 
effect has more than one cause, just as when a communications channel has more 
than one input, one must be more careful in measuring the amount of information 
transmitted from cause to effect. 

6.3 Causal Models 

Directed graphs will be used to model the causal relationships between events. So, 
for example, A B will indicate that A has an effect on B in the sense given 
above, that variation in the outcome of A induces a correlated variation in the 
outcome of B under some circumstances. Similarly, A ---+ B C indicates that A 
has an effect on B, B has an effect on C, and that A may have an effect on C, but 
only through its effect on B. That is, A ---+ B indicates that A has a direct effect 
on B, unmediated by any of the other variables about which we possess statistical 
information. 

6.3.1 Models with Two Variables 

Causal models imply the existence of independence relationships between the events 
in the model. Consider a model, A B, for the events A and B: in this model, 
there is no causal connection whatsoever between A and B. Since there is no casual 
connection between A and B, there should be no correlation between A and B: that 
is, the model, A B implies that I (A; B) = 0. Similarly, the models, A ---+ 8 and 
8 ---+A, both imply that I (A; B) need not be equal to zero. 

At first sight, it might be thought that A B shou ld imply that l(A ;B) is 
strictly greater than zero. This is not the case. Consider, for instance, an exclusive 
0 R gate, whose output is equal to 1 when exactly one of its inputs is 1, and equal 
to 0 otherwise. Label the inputs A, C and the output B. Suppose that each of the 
four possible combinations for the inputs A and C, 00,01 , 10, and I I , have equal 
probability. It is easy to verify that even though variation in the input A can cause 
a correlated variation in the ou tput B, in the absence of knowledge of the value 
of C, A and B are uncorrelated. The reason for this lack of correlation is that the 
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value of C determines the way in which variation in A induces variation in 8: if 
C = 0, then variation in A produces a perfectly correlated variation in B - when 
A is 0, B is 0, when A is l , B is I ; if C = I, then variation in A produces a perfectly 
anticorrelated variation in B - when A is 0, B is I, when A is 1, B is 0. If both 
values for C are equally probable, then t he correlation between A and 8 when C = 0 
is counterbalanced by the anticorrelation when C = l, and A is not correlated with 
B. even though it is a cause of B. If C = 0 and C = I are not equally probable, 
however, A and 8 will be correlated. A --+ B generally implies that l(A ; B) > 0; 
special conditions are required on the other causes of 8 to destroy this correlation. 

For causal models containing only two variables, the situation can be summarized 
as follows : A B implies that I(A;B) = 0; A --+ 8 and 8 --+ A generally 
imply that I (A; B) > 0, but are also consistent with I (A ; B) = 0. If the statistics 
for the outcomes of A and B give I (A; B) > 0, then they rule out the model 
A B. I (A; B) > 0 does not imply that either A --+ 8 or 8 --+ A is the case, 
however. Correlation between A and B can also be explained by the existence of a 
common cause f.t that lies outside the set of events about which we possess statistics: 
A +-- f.( --+ 8 can a lso give I (A; B) > 0. At the level of two events, no causal 
asymmetry can be derived from statistical relations. Two events are either correlated 
or not, and correlation gives no clue as to which is cause and which is effect, or 
whether both are effects of some common cause. 

6.3.2 Three and More Variables 

At this point, it may seem that an elaborate notation has been introduced merely 
to state the obvious: events whose outcomes are correlated are causally connected, 
either by standing in a cause-effect relationship to each other or by possessing 
some common cause. The usefulness of introducing directed graphs to model causal 
situations arises when one desires to keep track of the causal relationships between 
more than two variables. In addition, with more than two variables, the asymmetric 
nature of the cause-effect relationship gives rise to recognizable statistical patterns. 

The simplest causal asymmetry to have a statistical signature is the 'causal fork' 
(Reichenbach 1956). Consider two causes that have a common effect: A--+ B +--

C, for example, the exclusive 0 R gate of the previous section. In this causal model, 
the only connection between A and C is the fact that they have a common effect. 
But there is no reason why two events should be correlated simply because they 
have a common effect. Therefore, A --+ B +-- C implies I (A ; C) = 0. Now suppose 
that the outcome of B is fixed to 0. By the rule for an exclusive 0 R gate, if A is 
0 then C must be 0, if A is J then C must be 1: fixing the outcome of B implies 
perfect correlation between the outcomes of A and of C. So A -+ B +-- C implies 
that I(A ;C) = 0, but I(A ;Cj8) need not equal 0. Now consider the same model, 
but with the direction of the cause-effect relationships reversed: A +-- B --+ C. 
Here 8 is a common cause of both A and C. Since A and C have a common 
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cause, there is no reason to expect that 1 (A; C) = 0. In addition, since the only 
causal connection between A and C is their common cause B, fixing the value of B 
should destroy the correlation between A and C: /(A; CIB) = 0. That is, A and C 
are correlated because variation in the outcome of B induces a correlated variation 
in the outcomes of A and C. ln the absence of any variation in B, there is no 
correlation between A and C. An example is a logic gate that has one input, B, and 
two outputs, A = B, and C = 1 - B; here A and C are perfectly anticorrelated, but 
fixing the value of B destroys that correlation. 

The two causal models with the cause-effect relationships reversed imply entirely 
different statistical independence relations. Having a common effect does not induce 
correlation between events, while having a common cause does. Controlling for the 
outcome of a common effect can make the outcomes of its causes correlated, while 
controlling for the outcome of a common cause has the opposite result. Reichenbach 
identified the different independence relationships implied by common causes and 
by common effects as forming the basis for our identification of causal asymmetries 
in the world around us. This asymmetry in causation is responsible for the primary 
psychological arrow of time, our belief that we can change the future, but not 
the past. The difference between common cause and common effect implies that 
correlations between events in the present are to be ascribed to common causes in 
the past. In particular, the correlation between our memories of past actions, and 
those events that our actions have affected, lead us to identify our past actions as a 
common cause of those present events and present memories. However, there is no 
reason why a future choice of action should generate correlation between present 
events and present state of mind. Therefore, insofar as our choices are designed to 
effect a positive correlation between our desires and the state of affairs in the world 
around us, this correlation lies in the future ; the past is beyond our control. 

The general rule for deriving independence relations between events in causal 
models with many variables can now be presented. The following result is due to 
Pearl (Pearl 1988), and results from applying the two rules given above: 1) two 
events whose only causal connection is a common effect shou ld not be correlated 
unless the outcome of their common effect is fixed; 2) a common cause tends to 
induce correla tion between its effects unless its outcome is fixed. Suppose that a set 
of events Y have their outcomes fixed . Consider a path within the causal model. 
This path is capable of inducing correlation between the events that make up its 
endpoints if all the common effects along the path either belong to the set Y or 
have some descendant in Y, and if no other events in the path belong to Y. Such a 
path is called open. A path that is not open is called closed. If there is no open path 
between A and B given Y, then /(A ; BIY) = 0. 

That is, a path is capable of generating correlation between its endpoints given 
Y if none of the common or intermediate causes - places where correlation is 
generated or propagated - along the path are fixed by fixing Y, and if a ll the 
common effects - places where the propagation of correlation breaks down -
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have been fixed to some degree, thus allowing correlation between their causes. So, 
for example, in the path A --+ B +-- C --+ D +-- £ , fix ing the outcomes of B and 
D allows correlation between A and E, while fixing the outcomes of C and D allows 
no correlation between A and E. 

The general rule for deriving conditional independence relations from causal 
models can now be given. Consider a causal model, given by a directed graph whose 
vertices represent both the events about which statistics are available, a nd also 
'hidden' events about which no statistical information is available. Consider three 
non- overlapping sets of events, X, Y and Z, taken from the events within the model 
about which statistics are available. X and Z are condi tionally independent given Y, 
J(X ; Z IY) = 0, if there are no open paths between events X E X and Z E Z given Y. 
If the causal model correctly represents the cause-effect relationships between events, 
then the conditional independence relationships derived from the model must hold. 
Statistically significant deviations from the implied independence relations falsify 
the model. 

In contrast, the existence of independence relationships above and beyond those 
implied by the causal model does not falsify the model. Two events may possess 
an open path between them, and still have statistically independent outcomes, as in 
the exclusive OR gate above. However, in the absence of detailed knowledge of the 
actual form of causal influence, one generally expects the conditional independence 
relationships implied by the causal model to be the only ones actually present in the 
data. For an open path not to generate correlation between its endpoints requires 
special sorts of causal influence along the path ; in the exclusive OR gate example, 
variation in one of the inputs fails to generate a correlated variation in the output if 
the values 0 and I for the other input are equal. Any deviation from equiprobability 
on the part of the second input will allow correlation between the other input and 
the output. A 'generic' open path generates correlation between its endpoints. 

6.4 Bayesian Networks 

Given these methods for deriving conditional independence relations from causal 
models, one can ask, When do two causal models imply the same set of independence 
relationships? The answer to this question is particularly simple when one restricts 
one's attention to causal models whose graphs contain neither directed loops nor 
unobserved variables. Such models, represented by directed, acyclic graphs, are 
called Bayesian Networks (Pearl 1988). 

The first point to note is that two directed, acyclic graphs that have different links 
(ignoring the directionality of those links) imply different conditional independence 
relations. Any two events that are not directly linked can be made independent 
by fixing the values of some set of events, while no conditional independence 
relation can be derived between two events that are directly linked. So two Bayesian 
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Networks that imply the same set of independence relations must have links in the 
same places. 

The second point to note is that two Bayesian Networks with links in the same 
places, but with different unlinked common effects, imply different independence 
relations. An unlinked common effect is one such as A - B -- C, where the 
two causes have no direct link between them. An acyclic model that contains 
A - B -- C always implies some conditional independence relation between A 
and C in which the value of B is not fixed. Any other set of directions for the links, 
A - B - C, A -- 8 -- C, or A -- B - C, gives conditional independence 
between A and C only if B is fixed. So two Bayesian Networks that imply the same 
set of independence relations must have links in the same places, and the same set 
of unlinked common effects. 

It is straightforward to verify that once the positions of the links and the unlinked 
common effects are given, the direction of the remainder of the links may be varied 
in any way that does not produce a directed loop or a new unlinked common 
effect - all Bayesian Networks obtained by such a process imply the same set of 
cond itional independence relationships. So two Bayesian Networks imply the same 
set of conditional independence relations if and only if they share the same link 
locations and the same unlinked common effects. This result was derived by the 
author and used in analyzing financial data ( 1986- 87); t he same result was derived 
independently by Pearl and Verma (Pearl, Verma 1990). Similar results can be 
derived if the no directed loop and no unobserved event restrictions are relaxed. 

6.5 Causal Asymmetry in Physical Systems 

The notion of causality in physics is the same as that assumed as a basis for 
causal modelling: variation in the outcome of the cause produces a correlated 
variation in the outcome of the effect. The methods of modelling causal systems 
given here, unsurprisingly, give correct results when applied to physical systems. 
As an example, the requirement in electrodynamics that the source- free part of the 
incoming electromagnetic field vanish is a way of realizing the requirement that 
correlated variation between the motions of charged particles be caused by the 
motions of charged particles in the past. Some subtleties arise, however. 

Since the causal models considered here correspond to directed graphs, to apply 
them to physical systems, one must either discretize the physical system, o r look at 
causal models that contain hidden variables. In addition, causal models are Marko-
vian in nature, defining causal relationships in terms of conditional probabilities, 
whi le nondissipative physical systems are generally characterized by Hamiltonian 
mechanics, a very particular type of Markov process. The deterministic nature of 
Hamiltonian mechanics implies the existence of statistical independence relations 
above and beyond those simply implied by the causal structure of a system. For 
example, controlling for the initial or fina l state of a Hamiltonian system completely 
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determines the system's trajecto ry, and destroys the sta tistical correlation between all 
variables, whether common causes or common effects. As a result, for Hamiltonian 
systems in the absence of noise, causa l asymmetry cannot generally be derived from 
statistics. Whenever noise is introduced, however, as in Brownian motion, or in other 
systems described by master equations, application of the above methods generally 
results in a unique set of statistical independence relations. In such cases, statistical 
relations can be used completely to determine the causal structure of the system. 

The methods described in this article are classical in nature, and do not take into 
account quantum mechanics. Quantum mechanical correlations can violate Bell's 
inequality : that is, the correlation between two spins in the Bohm version of the 
Einstein- Podolsky- Rosen gedanken experiment is of a form that cannot be reduced 
to zero by controlling for the val ue of a common cause (Bell 1964, Bohm 1951 , 
Einstein, Podolsky, Rosen 1935). This result does not invalidate the present work, 
however. The correlation between the spi ns is still due to a com mon cause in the 
past: this common cause - the S- wave state out of which the spins arise - is 
fundamentally non- classical, and is not an 'event' whose outcomes can be assigned 
probabilities. Such quantum- mechanical causes can be included in causal models 
as bidden common causes. The resulting ca usal models, though expressed in terms 
of classical probabilities, are perfectly consistent both with quantum mechanics and 
with experiment. Bell's inequalities tell us only that such common causes cannot 
be resolved by experiment: hidden quantum- mechanical causes will always remain 
hidden. 

6.6 Conclusion 

The methods presented here are useful in ruling out causal models that predict 
independence relations that are not realized by the data. If hidden common causes 
can be ruled out a priori. then in many occasions, one and only one causal model 
is consistent with the data. If common causes cannot be ruled out, then although 
one can sti ll rule out causa l models that are inconsistent with the data, no unique 
model can be derived from the data ; one can always postulate a model with many 
different hidden causes (e.g., a conspiracy theory), that explains the correlations in 
the data as accurately as a model wi th few or no hidden causes. In such cases a 
further principle, such as Occam's razor, must be introduced to identify the most 
plausible causal model. 

In closi ng, it should be noted that when applied to the universe as a whole, 
the causal models presented here require a particular type of initial condition. [f 
correlation in the present is to be ascribed to common causes in the past, then at the 
unique moment at which there was no past, there should be no correlation. Although 
one must be carefu l about extrapolating classical methods back to a quantum initial 
condition, the present work implies that in add ition to being in a state of low entropy, 
the universe began in a state wi th no correlation between spacel ike separated points 
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beyond that required by the Heisenberg uncertainty principle. In fact, Euclidean 
quantum gravity calculations point to just such an initial condition (Halliwell 1994, 
Laftamme 1994). 
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