
REVERSIBLE COMPUTING

Tommaso Toffoli

MIT Laboratory for Computer Science
545 Technology Sq., Cambridge, MA 02139

Abstract. The theory of reversible computing is based on invertib|e primitives
and composition rules that preserve invertibility. With these constraints, one can still
satisfactorily deal with both functional and structural aspects of computing processes;
at the same time, one attains a closer correspondence between the behavior of abstract
computing systems and the microscopic physical laws (which are presumed to be
strictly reversible) that underly any concrete implementation of such systems.

According to a physical interpretation, the central result of this paper is that i¢
is ideally possible to build sequential c/rcuits with zero internal power dissipation.

L Introduction

This is an abridged version of a much longer report of the same title[27], to which
the reader may turn for further details, most proofs, and extended references. Here, the
numbering of formulas, figures, etc. reflects that of the original version.

Mathematical models of computation are abstract constructions, by their nature un-
fettered by physical laws. However, if these models are to give indications that are relevant
to concrete computing, they must somehow capture, albeit in a selective and stylized
way, certain general physical restrictions to which all concrete computing processes are
subjected.

One of the strongest motivations for the study of reversible computing comes from
the desire to reduce heat dissipation in computing machinery, and thus achieve higher
density and speed. Briefly, while the microscopic laws of physics are presumed to be
strictly reversible, abstract computing is usually thought of as an irreversible process,
since it may involve the evaluation of many-to-one functions. Thus, as one proceeds down
from an abstract computing task to a formal realization by means of a digital network and
finally to an implementation in a physical system, at some level of this modeling hierarchy
there must take place the transition from the irreversibility of the given computing process
to the reversibility of the physical laws. In th.c customary approach, this transition occurs
at a very low level and is hidden--so to speak--in the "physics" of the individual digital
gate;* as a consequence of this approach, the details of the work-to-heat conversion process
are put beyond the reach of the conceptual model of computation that is used.

On the other hand, it is possible to formulate a more general conceptual model of
computation such that the gap between the irreversibility of the desired behavior and the
reversibility of a given underlying mechanism is bridged in an explici~ way within the
model itself. This we shall do in the present paper.

~'~ypically, the computation is logically organized around computing primitives that are
not invertible, such as the N^ND gate; in turn, these are realized by physical devices which,
while by their nature obeying reversible microscopic laws, are made macroscopically irre-
versible by allowing them to convert some work to heat.

633

An important advantage of our approach is that any operations (such as the clearing
of a register) that in conventional logic lead to the destruction of macroscopic informa-
tion, and thus entail energy dissipation, here can be planned at the whole-circuit level
rather than at the gate level, and most of the time can be replaced by an information-
losstess variant. As a consequence, it appears possible to design circuits whose internal
power dissipation, under ideal physical circumstances, is zero. The power dissipation tha t
would arise at the interface between such circuits and the outside world would be at most
proportional to the number of input/output lines, rather than to the number of logic gates.

2. Terminology and notation

A function 4: X - ~ Y is finite if X and Y are finite sets. A finite automaton is a
dynamical system characterized by a transition function of the form r : X X Q --~ Q X Y,
where r is finite. Without loss of generality, one may assume that such sets as X, Y, and
Q above be explicitly given as indexed Cartesian products of sets. We shall occasionally
call lines the individual variables associated with the individual factors of such products.
In what follows, we shall assume once and for all that all factors of the aforementioned
Cartesian products be identical copies of the Boolean set B ---~ (0,1). A finite function is
of order n if it has n input lines.

The process of generating multiple copies of a given signal must be treated with
particular care when reversibility is an' issue (moreover, from a physical viewpoint this
process is far from trivial). For this reason, in all that follows we shall restrict the meaning
of the term "function composition" to one-to-one composition, where any substi tution of
ou tpu t variables for input variables is one-to-one. Thus, any "fan-out" node in a given
function-composition scheme will have to be treated as an explicit occurrence of a fan-
out function of the form (x) H (x, . . . , x). Intuitively, the responsibility for providing fan-
ou t is shifted from the composition rules to the computing primitives.

Abstract computers (such as finite automata and Turing machines) are essentially
function-composition schemes. It is customary to expJ'ess a function-composition scheme
in graphical form as a causality network. This is basically an acyclic directed graph in
which nodes correspond to functions and arcs to variables. By construction, causal i ty
networks are "loop-free," i.e., they contain no cyclic paths. A combinational network is
a causality network that contains no infinite paths. Note that a finite causality network
is always a combinational one. With certain additional conventions (such as the use of
special markers called delay elements), causality networks having a particular i terative
structure can be represented more compactly as sequential networks.

A causality network is reversible if it is obtained by composition of invertible primi-
tives. Note that a reversible combinational network a|ways defines an invertible function.
Thus, in the case of combinational networks the structural aspect of "reversibility" and
the functional aspect of "invertibility" coincide. A sequential network is reversible if
its combinational part (i.e., the combinational network obtained by deleting the delay
elements and thus breaking the corresponding arcs) is reversible.

We shall assume familiarity with the concept of "realization" of finite functions and
au tomata by means of, respectively, combinational and sequential networks. In what
follows, a "realization" will always mean a componentwise one; that is, to each input (or
output) line of a finite function there will correspond an input (or output) line in the
combinational network that realizes it, and similarly for the realization of au tomata by
sequential networks.

634

3. Introductory concepts

As explained in Section 1, our overall goal is to develop an explicit realization of
computing processes within the context of reversible systems. As an introduction, let us
consider two simple functions, namely, VAN-OUT (3.1a) and xoa (3.1b):

2:1 X2 y

x Y192 0 0 0
(a) 0 ~ O0 (b) 0 1 ~ 1

1 1 1 0 1"
I 1 0 (3.1)

FAN-OUT
Yl ---'~X

XOR

X2

Neither of these functions is invertible. (Indeed, V^N-OVT is not surjective, since, for in-
stance, the output (0,1) cannot be obtained for any input value; and xoa is not in ject ive ,
since, for instance, the output 0 can be obtained from two distinct input values, (0, 0) and
(1,1)). Yet, both functions admit of an invertible realization.

To see this, consider the invertible function xoa/v^N.ouv defined by the table

O0 O0
Ol ~ 11
10 10'
11 01

(3.2)

which we have copied over with different headings in (3.3a), (3.3h), and (3.6b). Then, VAN-
OUT can be realized by means of this function* as in (3.3a) (where we have outlined the
relevant table entries), by assigning a value of 0 to the auxiliary input component c; and
xoa can be realized by means of the same function as in (3.3b), by simply disregarding
the auxiliary output component 9. In more technical terms, (3.1a) is obtained from (3.3a)
by componentwise restriction, and (3.1b) from (3.3b) by projection.

c x Yl 92 xl x2 y g
o~ ~] [~ [~o

(a) om ~ m ~ (b) ~]fi3 [] l
10 i 0 [] [] ~ ~ 0

! o i [i][i] [~

c--=0

92 = x ~ y -= xl (~ x~
¥
!

(3.3)

*Ordinarily, one speaks of a realization "by a network." Note, though, that a finite function
by itself constitutes a trivial case of combinational network.

635

In what follows, we shall collectively call the source the auxiliary input components
tha t have been used in a realization, sUch as component c in (3.3a), and the sink the
auxiliary output components such as g in (3.3b). The remaining input components will
be collectively ~'alled the argument, and the remaining output components, the result.

In general, both source and sink lines will have to be introduced in order to construct
an invertible realization of a given function.

Xl ~'2 Y

O0 0 z y
(a) 0 I _~ 0 (b) 0 _ , 1

1 0 0 0
1 / 1 (3.4)

AND NOT

X2

For example, from the invertible function AND/NAND defined by the table

000 000
0 0 1 0 0 1
010 010
011 ~ 111
100 100 '
101 101
110 110
1 1 1 011

(3.s)

the ANn function (3.4a) can be realized as in (3.6a) with one source line and two sink lines.

(~)

CXlX2 y gl g2

o ~ [~ [~o o
o ~ m [~ o ,
o m ~ ~] , o
omm --. [i]11
1 0 0 1 0 0
1 0 I 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

x c y c~
O0 O0

(b) 1 o - ' 1o

c = O c = l

I i
x2

i
' ' ~'(= 6
!

(3.6)

Observe that in order to obtain the desired result the source lines must be fed with
specified constant values, i.e., with values that do not depend on the argument. As for

636

the sink lines, some may yield values that do depend on the argument--as in (3.6a)--
and thus cannot be used as input constants for a new computation; these will be called
garbage lines. On the other hand~ some sink lines may return constant values; indeed,
this happens whenever the functional relationship between argument and result is itself
an invertible one. To give a trivial example, suppose that the NOT function (3.4b), which
is invertible, were not available as a primitive. In this case one could still realize it s tar t ing
from another invertible function, e.g., from the XOa/FAN-OUT function as in (3.6b); note
tha t here the sink, c t, returns in any case the value present at the source, c. In general, if
there exists between a set of source lines and a set of sink lines an invertible functional
relationship that is independent of the value of all other input lines, then this pair of
sets will be called (for reasons that will be made clear in Section 5) a temporary-storage
channel

Using the terminology just established, we shall say that the above realization of
the F^N-OUT function by means of an invertible combinational function is a realization
with constants, that of the xoa function, with garbage, that of the AND function, with
constants and garbage, and that of the NOT function, with temporary storage (b r the sake
of nomenclature, the source lines that are part of a temporary-storage channel will not be
counted as lines of constants). In referring to a realization, features that are not explicitly
mentioned will be assumed not to have been used; thus, a realization "with temporary
storage" is one without constants or garbage. A realization that does not require any
source or sink lines will be called an isomorphic realization.

4. The fundamental theorem

In the light of the particular examples discussed in the previous section, this section
establishes a general method for realizing an arbitrary finite function ~b by means of an
invertible finite function f .

In general, given any finite function one obtains a new one by assigning specified
values to certain distinguished input lines (source) and disregarding certain distinguished
ou tpu t lines (sink). According to the following theorem, any finite function can be realized
in this way starting from a suitable invertible one.

THEOREM 4.1 For every finite funcfion ~b: Bin--* B" there exists an invertible finite
function f : B r × B~--+ B" X B r+m-" , w/th r ~ n, such that

: (o , . . . , o, . . . , :,:,.,,) = = i,...,,). (4.1)

Thus, whatever can be computed by an arbitrary finite function according to the schema
of Figure 4.2a can also be computed by an inver~ible finite function according to the
schema of Figure 4.2b.

637

s o u r c e

(b) ,
t

argument --,,- finite result argumcnt -*,-~ finite result
function | function

¥
!

sink
FI¢. 4.2 Any finite function (a) can be realized as an invertible finite function (b)
having a number of ituxiliary input lines which are fed with constants and a number
of auxiliary output lines whose values are disregarded.

5. Invertible primitives and reversible networks

In the previous section, each given ~b was realized by a reversible combinational net-
work consisting of a single occurrence of an ad hoc primitive f . In this section, we shall
s tudy the realization of arbitrary finite functions by means of reversible combinat ional
networks constructed from given primitives; in particular, from a certain finite set of ve ry
simple primitives.

It is well known that, under the ordinary rules of function composition, the two-input
N^NO element constitutes a universal primitive for the set of all combinational functions.

In the theory of reversible computing, a similar role is played by the AND/NAND element,
defined by (3.5) and graphically represented as in Figure 5.1c. Referring to (3.fin), observe
tha t y ~ ~ l ~ (AND function) when c -~ 0, and y ----- zjz2 (n^ND function) when c ~ L
Thus, as long as one supplies a value of I to input c and disregards outputs 91 and 92, the
AND/N^ND element can be substituted for any occurence of a hAnD gate in an o rd inary
combinational network.

In spite of having ruled out fan-out as an intrinsic feature provided by the composit ion
rules, one can still achieve it as a function realized by means of an invertible primitive,
such as the xoa/FAn-ouT element defined by (3.2) and graphically represented as in F igure
5 . lb . In (3.3a), observe that Yl = ~ = x when e = 0 (VAN-OUT function); and in (3.3b),
t ha t y ----= xl ~ x~ (xon function).

Finally, recall that finite composition always yields invertible functions when applied
to invertible functions (cf. Section 2).

Therefore, using the set of invertible primitives consisting of the AND/NAND element and
the XOR/V^N.OUT element, any combinational network can be immediately translated into
a reversible one which, when provided with appropriate input constants, will reproduce
the behavior of the original network. Indeed, even the set consisting of the single ele-
ment AND/NAND is sUfficient for this purpose, since XOR/FAN-OUT can be obtained f rom
AND/tNAND, with one line of temporarty storage, by taking advantage of the mapping
(l, p, q) t-~ (l, p, p (~) q).)

In the element-by-element substitution procedure outlined above, the number of source
and sink lines that are introduced is roughly proportional to the number of comput ing
elements that make up the original network. From the viewpoint of a physical implemen-
tat ion, where signals are encoded in some form of energy, each constant input entails
the supply of energy of predictable form, or work, and each garbage output entails the
removal of energy of unpredictable form, or heat. In this context, a realization with fewer

638

source and sink lines might point the way to a physical implementation that dissipates
less energy.

Our plan to achieve a less wasteful realization will be based on the following concept.
While it is true that each garbage signal is "random," in the sense that it is not predictable
without knowing the value of the argument, yet it will be correlated with other signals
in the network. Taking advantage of this, one can augment the network in such a way as
to make correlated signals interfere with one another and produce a number of constant
signals instead of garbage. These constants can be used as source signals in other parts of
the network. In this way, the overall number of both source and sink lines can be reduced.

In the remainder of this section we shall show how, in the abstract context of reversible
computing, destructive interference of correlated signals can be achieved in a systematic
way. First, we shMl prove that any invertible finite function can be realized isomorphically
from certain generalized ^ND/N^ND primitives. Then, we shall prove that any of these
primitives can be realized from the ^Nn/NANn element possibly with temporary storage
but with no garbage.

DEFINITION 5.1 Consider the set B = {0,1} with the usual structure of Boolean
ring, with "(~" (exclusive-on) denoting the addition operator, and juxtaposition {^No)
the multiplication operator. For any n > 0, the generalized AND/NANn function of order
n, denoted by 0('1) : B" ~ B", is defined by

r Ii) oc-): i ! . (5.U

\xn / z , (~ xlx2' " "x , - I

We have already encountered 00) under the name of the NoT element, 0 (2) under the
name of the XOnlFAN-OUT element, and 0 (3) under the name of the AND/N^ND element. The
generalized AND/NAND functions are graphically represented as in Figure 5.1d.

(a) (b) (c) (d) r - - = - - , .

2 I I I ! t I
I I I I t M ,

, I

L J. c a

NOT xon./PAN-OUT ANDINAND generalized AND/NAND

FIG..5.1 Graphic representa*ion of the generMized ̂ ND /NAND functions. W^RNINC:
This representation is offered only as a mnemonic aid in recalling a function's t ru th
table, and is not meant to imply any "internal structure" for the function, or suggest
any particular implementation mechanism. (a) 0(0, which coincides with the NOT
element; (b) 0 (2), which coincides with the xon/r^N.ouv element; (c) 0 (3), which coin-
cide.8 With the AND/NAND element; and, in general, (d) OCn), the generalized AND/NAND
function of order n. The bilateral symmetry of these symbols recalls the fact ~hat
each of the corresponding functions coincides with its inverse.

639

THEOREM 5.1 Any inverfible finite function of order n can be obtained by composition
of generalized ANn/N^Nn functions of order < n.

Remark. Note that the realization referred to by Theorem 5.1 is an isomorphic one
(unlike tha t of Section 4, which.makes use of source and sink lines).

THgonEM 5.2 There exist invertible finite functions of order n which cannot be
obtained by composition of generalized ANWNAN, functions of order strictly less than n.

Remark. According to this theorem, the ^ND/N^ND primitive is not sufficient for the
isomorphic reversible realization of arbitrary invertible finite functions of larger order.
This result can be generalized to any f/Hire set of invertible primitives Thus, one mus t
turn to a less restrictive realization schema involving source and sink lines.

Tn~on~M 5°3 Any inverfible finite function can be realized, possibly with tem. po ra ry
storage, [but with no garbage!] by means of a reversible combinational network using as
primitives the generalized ^ND/N^Nn elements of order <__ 3.

Proof. In view of Theorem 5. I, it will be sufficient to realize (possibly with temporary
storage) all 0(0 for i __ n, where n is the order of the given function. We shall proceed by
recursion; namely, given 0 (n-0 , 0 (n) can be realized with one line of temporary storage
as follows.

Construct the network of Figure 5.3, which contains two occurrences of O (n - l) and
one occurrence of 0 (a). Observe that c t ~- c, since every generalized AND/NAND element
coincides with its inverse (and thus the second occurrence of 0 (" - 0 cancels the effect of
the first). Therefore, the pair ({c}, {E}) constitutes a temporary-storage channel. When
¢ ~ 0, the remaining variables behave as the corresponding ones of 0('0.1

! i

¢ ¢"

() x~ Yn

Fro. 5.3 Realization with temporary storage of 0(") from 0("--0 (and 0(3)). In this
network, when c = 0, also d = 0, and the remaining components behave as the
corresponding ones of 0(").

The proof of Theorem 5.3 establishes a general mechanisms for bringing about destruc-
tive interference of garbage. With reference to Figure 5.3, which can serve as an out l ine
for the general case, observe that the left portion of the network is accompanied by its
"mirror image" on the right. The left portion computes an intermediate result (on the line
running from c to c~ that is needed as an input to the lower portion and is returned by it
unchanged. Having performed its function, this intermediate result is then "undone" by
the right portion, so that no garbage is left.

The reader may refer to [7] for more specific examples of destructive interference of
garbage.

640

The following list (cf. Figure 5.5)
resources of which a reversible network
a finite function ~.

sums up in a schematic way the i n p u t / o u t p u t
must avail itself in order to be able to compute

(a) argument _~
(b) constantg
(c) -~- ~emporary

(o,sta,ts

~ rcsult
garbage

s~orage channels - ~ -

~ ,.-- garbage

FIG. 5.5 Classification of input and output lines in a reversible combinational net-
work, according to their function. (a) Argument and result of the intended com-
putation. (b) Constant and garbage lines to account for the noninvcrtibility of the
given function. (c) "Temporary storage" registers required when only a restricted
set of primitives is available. (d) Additional constant and garbage lines required
when in designing the network one chooses not to take full advantage of the cor-
relation between internal streams of data, and thus looses opportunities t o bring
about destructive interference of garbage.

6. Conservative logic

Universal logic capabilities can still be obta in~ even if one restricts one's a t t en t ion
to combinational networks that, in addition to being reversible, conserve in the o u t p u t
the number of O's and l ' s that are present at the input. The s tudy of such networks is
par t of a discipline called conservative logic [7] (also cf. [11]). As a mat ter of tact, most
of the results of Sections 4 and 5 were originally derived by Fredkin and associates in the
context of conservative logic.

In conservative logic, all data processing is ultimately reduced to conditional routing
of signals. Roughly speaking, signals are treated as unalterable objects that can be moved
around in the course of a computation but never created or destroyed.

The basic primitive of conservative logic is the Eredkin.gate, defined by the table

c zl ::2 c' Yl y2

0 0 0 0 0 0
0 0 I 0 1 0
0 / 0 0 0 1
0 I I ~ 0 1 1
1 0 0 1 0 O "
1 0 I 1 0 1
1 / 0 1 1 0
II I !I I

(0.1)

This computing element can be visualized as a device that performs conditional crossover
of two data signals a and b according to the value of a control signal c (Figure 6.1a). When
c - - I the two data signals follow parallel paths, while when e ~ 0 they cross over (Figure
6.1b).

641

(a) (b)
c ~ ~ I ~ i~ 1

t
a b
b a

Fro. 6.1 (a) Symbol and (b) opera¢ion of the Fredkin gate.

In order to prove the universality of this gate as a logic primitive for reversible com-
puting, it is sufficient to observe that AND can be obtained from the mapping (p, q, 0)
(p, pq, ~q), and Nov and VAN-OUT from the mapping (p, 1, 0) H (p,p, ~).

In a conservative logic circuit, the number of l 's, which is conserved in the operation
of the circuit, is the sum of the number o f / ' s in different parts of the circuit. Thus, this
quant i ty is an additive "integral of the motion," and can be shown to play a role analogous
to tha t of energy in physical systems. Other connections between conservative logic and
physics will discussed in more detail in [7], where, in particular, we describe a physical
realization of the Fredkin gate based on elastic collisions.

7. Reversible sequential computing

In Sections 4 and 5, we started from a certain computing object (viz., a finite func-
tion), and we discussed the conditions for its reversible realization first (a) as an object of
the same nature (viz., an invertible finite function) treated as a "lumped" system, thus
stressing functional aspects, and then (b) as a "distributed" system (viz., a reversible
combinational network), thus stressing structural aspects and paving the way for a natura l
physical implementation.

By and large, we shall follow a similar plan in dealing with the more complex comput ing
objects that constitute the paradigms of sequential computing, namely, finite a u t o ma t a
(in the present section), Turing machines (Section 8), and cellular automata (Section 9).

By definition, a finite automaton is reversible if its transition function is invertible.
Thus, in order to realize a finite automaton by means of a reversible sequential network,
it will be sufficient to take its transition function, construct a reversible realization of it,
and use this as the combinational part of the desired sequential network. The problem
of reversibly realizing an arbitrary finite function has been solved in Section 4. Thus, we
have the following theorem.

TEOrmM 7.1. For every finite automaton r: X X Q-~.Q x Y, where X -~- B m, Y ~ B n,
and Q .~- B u, there exists a reversible finite automaton ~: (B r X B m) X B u--~ B u X (B n X
B r + m - ") , wi~h r <__ n Jr" u, such tha~

, .L.,
~, (0 , . . . , 0,. x l , . . . , x,~, q l , . . . , qd = T, {xb. . . , xm, q l , . . . , qu), (i = 1 , . . . , u Jr- n).

In other words, whatever can be computed by an arbitrary finite automaton according to
the scheme of Figure 7.3a can also be computed by a reversible finite automaton according
to the schema of Figure 7.3b.

642

(a)

i npu t - -~a rb i~ ra ry ~---output
old s ta~] finite [new s~a~e

? /function ~

(b) source ~

input ~ iuvertible ~--output
finite [

function

l dela,s
FIG. 7.3 Any finite automaton (a) can be realized as a reversible finite automaton
(b) having a number of auxiliary input lines ('source) which are fed with constants
and a number of auxiliary output lines (sink) whose values are disregarded.

Having discussed the realization of finite automata by means of reversible finite
automata, we turn now to the realization of finite automata by means of reversible finite
sequential networks based on given primitives.

It is clear that all the arguments of Sections 5 and B concerning finite functions im-
mediately apply to the transition function of any given finite automaton. In particular,
every finite automaton can be realized by a finite, reversible sequential network based
on, say, the AND/NAND primitive. With reference to Figure 5.5, one can visualize such a
realization by feeding back, via delay elements, some of the result lines to some of the
argument lines, and all all of the temporary-storage outputs to the corresponding inputs.
In order to insure the desired behavior, the delay elements associated with the temporary-
storage channels must be initialized once and for all with appropriate values (typically,
all O's), while the source lines must be fed with appropriate constants (typically, all O's)
at every sequential step.

In a conventional computer, power dissipation is proportional to the number of logic
gates. On the other hand, the number of constants/garbage lines in Figure 7.4 is at
worst proportional to the number of input/output lines (ef. Theorems 4.1 and 5.3). From
the viewpoint of a physical implementation, where signals are encoded in some form of
energy, the above schema can be interpreted as follows: Using invertible logic gates, it
is ideally possible to build a sequential computer with zero internal power dissipation.
Power dissipation might arise outside the circuit, typically at the input/output interface,
if the user chose to connect input or output lines to nonreversible digital circuitry. Even
in this case, power dissipation is at most proportional to the number of argument/result
lines,* rather than to the number of logic gates (as in ordinary computers), and is thus
independent of the "complexity" of the function being computed. This constitutes the
central result of the present paper.

8. Reversible Turing machines

We shall assume the reader to be familiar with the concept of Turing machine. From

*According to Theorem 4.1, the number of constant lines need not be greater than that of
result lines, and the number of garbage lines need not be greater than that of argument
lines.

643

our viewpoint, a Turing machine is'a closed, time-discrete dynamical system having three
state components, i.e., (a) an infinite tape, (b) the internal state of a finite automaton
called head, and (c) a counter whose content indicates on which tape square the head will
operate next. Let T, H, and C be the sets of tape, head, and counter states, respectively:
A Turing machine is reversible if its transition function r: T × H × C ---, T × H × (7 is
invertible.

It is well known that for every reeursive function .there exists a Turing machine that
computes it, and, in particular, that there exist computation-universal Turing machines.
Are these capabilities preserved if one restricts one's attention to the class of reversible
Turing machines?

The answer to the above question is positive. In fact, in [4] Bennett exhibits a proce-
dure for constructing, for any Turing machine and for certain quite general computation
formats, a reversible Turing machine that performs essentially the same computations.

In order to obtain the desired behavior, Bennett's machine is initialized so that all of the
tape is blank except for one connected portion representing the computation's argument,
and the head is set to a distinguished "initial" state and positioned by the argument's
first symbol. At the end of the computation, i.e., when the head enters a distinguished
"terminal" state, the result will appear on the tape alongside with the argument, and the
rest of the tape will be blank. Thus, a number of tape squares that are initially blank will
eventually contain the result. These squares fulfill a role similar to that played by the
constants/garbage lines in Section 5, in the sense that they provide a sufficient supply of
"predictable" input values (blanks) at the beginning of the computation, and collect the
required amount of "random" output values (in this case, a copy of the argument--cf.
the first row of (4.2)) at the end of the computation. Moreover, during the computation a
number of originally blank tape squares may be written over and eventually erased. These
squares fulfill a role similar to that played by the temlSorary-storage lines in Section 5.

It is clear that, like the constants in the reversible combinational networks of Section
5, the blanks in Bennett's machine play an essential role in the computation, since without
their presence one could not achieve universality and reversibility at the same time.
Intuitively, computation in reversible systems requires a higher degree of "predictability"
about the environment's initial conditions than computation in nonreversible ones.

9. Reversible cellular automata

We shall assume the reader to have some familiarity with the concept of cellular
automaton--in essence an array of identical, uniformly interconnected finite automata[21].
From a physical viewpoint cellular automata are in many respects more satisfactory models
of computing processes than Turing machines[22], and for this reason the question of
whether there exist reversible cellular automata that are computation- and construction-
universal is of particular interest (and has been long debated).

The answer to the above question is positive. In hct, in [20] Toffoli exhibits a proce-
dure for constructing, for any cellular automaton (presented as an infinite, space-iterative
sequential network), a reversible cellular automaton that realizes it. As in the case of
r.eversible Turing machines, also in reversible cellular automata the predictability of a
computing structure's environment plays an essential role in making the computation
proceed as intended.

It is well known that any Turing machine can be embedded in a suitable cellular

644

automaton. Thus, according to the foregoing discussion, any Turing machine can be
realized by an infinite reversible s~quential nework.

10. Conclusions

We have shown that the choice to use reversible mechanisms in describing functional
and structural aspects of computing processes is a viable one. What can be gained from
this choice?

In the synthesis of an abstract computing system, the requirement that the system
be reversible can in general be met only at the cost of greater structural complexity.
This "logical" overhead is quite slight; on the other hand, the system's very reversibility
promises to be a key factor in leading to a more efficient physical realization, since, at the
microscopic level, the "primitives" and the "composition rules" available in the physical
world resemble much more closely those used in the theory of reversible computing than
those used in traditional logic design.

Acknowledgments

Many ideas discussed in the present paper were originated by Prof. Edward Fredkin,
to whom I also owe much useful advice and encouragment.

This research was supported by the Adyanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under Contract
No. N00014-75-C-0661.

List of references

[4] BENNETT, C. H., "Logical Reversibility of ComPutation," I1JM J. Res. Dev. O (1973),
525-532.

[7] FaEDK~N, Edward, and Tor'vo~a, Tommaso, '*Conservative Logic," (in preparation).
Some of the material of this paper is tentatively available in the form of unpublished
notes from Prof. Fredkin's lectures, collected and organized by Bill Silver in a
6.895 Term Paper, "Conservative Logic," and in the form of another 6.895 Term
Paper, "A Reversible Computer Using Conservative Logic," by Edward Barton,
both at the MIT Dept. of Electr. Eng. Comp. Sci. (1978).

[11] KINOSmTA, Kozo, et al., "On Magnetic Bubble Circuits," IEEE Trans. Computers
C-25 (1976), 247-253.

[12] L^ND^UEn, Rolf, "Irreversibility and Heat Generation in the Computing Process,"
m M J. 5 (1961), 183-191.

[20] TovroLI, Tommaso, "Computation and Construction Universality of Reversible
Cellular Automata," J. Comput. Syst. Sci. 15 (1977), 213-231.

[21] ToPl~OLt, Tommaso, "Cellular Automata Mechanics" (Ph. D. Thesis), Tech. Rep.
no. 208, Logic of Computers Group, Univ. of Michigan (1977).

[22] TovvOLi, Tommaso, "The Role of the Observer in Uniform Systems," Applied
General Systems Research (ed. G. J. Klir), 395-400 (Plenum Press, 1978).

[23] Tovrom, Tommaso, '~Bicontinuous Extensions of Invertible Combinatorial
Functions," Tech. Memo MIT/LCS/TM-124, MIT Lab. for Comp. Sci. (1979) (to
appear in Math. SysL Theory).

[27] TovFom, Tommaso, '~Reversible Computing," Tech. Memo MIT/LCS/TM-151, MIT
Lab. for Comp. Sci. (1980).

