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Irreversibility and Heat Generation 
in the Computing Process 

Abstract: It i s  argued  that computing machines inevitably involve devices which perform logical functions 

that do not have a single-valued inverse. This logical irreversibility i s  associated with physical irreversibility 

and requires a minimal  heat generation, per machine cycle, typically of the order of kT for each irreversible 

function. This dissipation serves the purpose of standardizing signals and  making them independent of their 

exact  logical history. Two simple, but representative, models of bistable devices are subjected to a more 

detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and 

to estimate the effects of errors induced by thermal fluctuations. 

1. Introduction 

The search for faster and  more compact  computing  cir- 
cuits  leads  directly to  the question: What  are  the ultimate 
physical limitations on  the progress in this  direction? In 
practice the limitations are likely to be set by the need for 
access to  each logical element. At this time, however, it is 
still hard  to understand  what physical requirements  this 
puts on  the degrees of freedom which bear  information. 
The existence of a  storage  medium  as  compact as  the 
genetic one indicates that  one  can go very far  in  the 
direction of compactness, at least if we are prepared to 
make sacrifices in the way of speed and  random access. 

Without considering the question of access, however, 
we can show, or at least very strongly suggest, that  infor- 
mation processing is inevitably accompanied by a  certain 
minimum amount of heat generation. In a general way 
this is not surprising. Computing, like all processes pro- 
ceeding at a finite rate, must involve some dissipation. 
Our arguments, however, are more basic than this, and 
show that  there is a minimum  heat  generation,  independ- 
ent of the  rate of the process. Naturally the  amount of 
heat generation involved is many orders of magnitude 
smaller than  the  heat dissipation in  any practically con- 
ceivable device. The relevant point, however, is that  the 
dissipation has a real function and is not just an unneces- 
sary nuisance. The  much larger  amounts of dissipation in 
practical devices may be serving the same  function. 

Our conclusion about dissipation can  be anticipated in 
several ways, and  our  major contribution will be a tight- 
ening of the concepts involved, in a  fashion which will 
give some  insight  into the physical requirements for logi- 
cal devices. The simplest way of anticipating our conclu- 
sion is to note that a  binary device must  have at least one 

degree of freedom associated with the information. Clas- 
sically a degree of freedom is associated with kT of 
thermal energy. Any switching signals passing between 
devices must  therefore have this  much energy to override 
the noise. This argument does not  make  it clear that  the 
signal energy must  actually be dissipated. An alternative 
way of anticipating our conclusions is to refer to  the argu- 
ments by Brillouin and earlier  authors,  as  summarized by 
Brillouin in his book, Science and Information Theory,' 
to  the effect that  the measurement  process  requires  a 
dissipation of the order of kT.  The computing process, 
where the setting of various elements depends upon the 
setting of other elements at previous times, is closely akin 
to a  measurement. It is difficult, however, to  argue  out 
this  connection in a more exact  fashion. Furthermore, 
the arguments  concerning the measurement process are 
based on the analysis of specific models (as will some of 
our arguments about  computing),  and the specific models 
involved in  the measurement analysis are rather  far  from 
the kind of mechanisms involved in  data processing. In 
fact  the arguments  dealing  with the measurement  process 
do  not define measurement very well, and avoid the very 
essential question: When is a system A coupled to a sys- 
tem B performing  a  measurement? The mere fact  that 
two physical systems are coupled  does  not in itself require 
dissipation. 

Our main argument will  be a refinement of the follow- 
ing  line of thought.  A  simple  binary device consists of a 
particle in a bistable potential well shown in Fig. 1. Let 
us arbitrarily label the particle in the left-hand well as the 
ZERO state.  When the particle is in the  right-hand well, 
the device is in the ONE state. Now consider  the  operation 183 
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RESTORE TO ONE, which leaves the particle in the ONE 
state,  regardless of its  initial  location. If we are told that 
the  particle is in  the ONE state, then  it is easy to leave it in 
the ONE state, without spending  energy. If on  the  other 
hand we are told that  the particle is in the ZERO state, we 
can  apply a force  to  it, which will push it over the  barrier, 
and  then,  when it has passed the  maximum, we can apply 
a retarding  force, so that when the particle  arrives at ONE, 
it will have no  excess kinetic  energy, and we  will not  have 
expended any energy in  the whole process, since we ex- 
tracted energy from  the particle in its  downhill  motion. 
Thus  at first sight it seems possible to RESTORE TO ONE 
without any  expenditure of energy. Note, however, that 
in order  to avoid energy  expenditure we have used two 
different routines,  depending on  the initial state of the 
device. This is not how  a computer operates. In most 
instances a computer pushes information  around in  a 
manner  that is independent of the  exact  data which are 
being handled,  and is only  a function of the physical 
circuit  connections. 

Can we then construct a single time-varying  force, 
F ( t ) ,  which when  applied to  the conservative system of 
Fig. 1 will cause the particle to  end  up in the ONE state, 
if it was initially in either the ONE state or the ZERO state? 
Since the system is conservative,  its  whole  history can be 
reversed in  time, and we will still have a system satisfying 
the laws of motion. In  the time-reversed system we then 
have the possibility that for a single initial  condition 
(position  in the ONE state, zero velocity) we can  end  up 
in  at least two places: the ZERO state  or  the ONE state. 
This,  however, is impossible. The  laws of mechanics are 
completely  deterministic and a trajectory is determined 
by an initial  position and velocity. (An initially unstable 
position can, in a sense, constitute an exception.  We can 
roll  away from  the unstable point  in  one of at least  two 
directions. Our initial point ONE is, however, a point of 
stable  equilibrium.)  Reverting to  the original  direction 
of time  development, we see then that  it is not possible to 
invent a single F (  t )  which causes the particle to  arrive  at 
ONE regardless of its  initial  state. 

If, however, we  permit  the potential well to be lossy, 
this becomes easy. A very strong positive initial force 
applied slowly enough so that  the  damping prevents oscil- 
lations will push  the  particle  to  the right,  past ONE, re- 
gardless of the particle's initial  state. Then if the  force is 
taken away slowly enough, so that  the  damping  has a 
chance to prevent  appreciable oscillations, the particle is 
bound  to  arrive  at ONE. This example also illustrates  a 
point argued elsewhere2 in  more  detail: While  a  heavily 
overdamped system is obviously undesirable,  since it is 
made sluggish, an extremely underdamped  one is also not 
desirable for switching, since then  the system may  bounce 
back into  the wrong state if the switching force is applied 
and removed too quickly. 

2. Classification 

Before  proceeding to  the  more detailed arguments we 
will need to classify data processing equipment by the 

184 means used to hold information, when it is not interacting 
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Figure I Bistable potential well. 
x is a generalized coordinate representing 
quantity  which is switched. 
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Figure 2 Potential well  in which ZERO and ONE state 
are not separated by barrier. 
Information is preserved because random 
motion is slow. 

or being processed. The simplest class and  the  one  to 
which all the arguments of subsequent  sections will be 
addressed consists of devices which can  hold  information 
without dissipating energy. The system illustrated  in 
Fig.  1 is in  this class. Closely related to  the mechanical 
example of Fig. 1 are ferrites,  ferroelectrics and  thin 
magnetic films. The  latter, which can switch  without 
domain wall motion,  are  particularly close to  the one- 
dimensional device shown  in  Fig. 1. Cryotrons  are also 
devices which show dissipation  only  when  switching. They 
do differ, however, from  the device of Fig. 1 because the 
ZERO and ONE states  are  not  particularly  favored  ener- 
getically. A cryotron is somewhat  like the mechanical 
device illustrated in Fig. 2,  showing a  particle in a box. 
Two  particular positions in  the  box  are chosen to repre- 
sent ZERO and ONE, and  the preservation of information 
depends on  the  fact  that Brownian motion in the box is 
very slow. The reliance on  the slowness of Brownian 
motion rather  than  on restoring  forces is not only charac- 
teristic of cryotrons,  but of most of the  more familiar 
forms of information storage:  Writing, punched cards, 
microgroove  recording,  etc. It is clear from  the  literature 
that all essential logical functions  can be performed by 



discussed for  the  latter in  detail by Swan~on.~   The  dissi- 
pative device, such as the single tunnel  diode, will in 
general  be an analog,  strictly  speaking, to an unsym- 
metrical  potential well, rather  than  the symmetrical well 
shown in Fig. 1. We  can  therefore expect that of the two 
possible states for  the negative resistance device only one 
is really  stable, the  other is metastable. An assembly of 
bistable tunnel  diodes  left  alone for a sufficiently long 
period would eventually  almost all arrive  at  the  same  state 
of absolute  stability. 

In general when using such  latching devices in  com- 
puting  circuits one tries hard  to  make  the dissipation  in 
the two allowed states  small, by pushing  these states  as 
closely as possible to  the voltage or  current axis. If one 
were successful in eliminating  this  dissipation  almost 
completely during  the steady state,  the device  would 
become  a member of our first class. Our intuitive  expecta- 
tion is, therefore, that  in  the steady state dissipative device 
the dissipation  per  switching  event is at least  as  high  as in 
the devices of the first class, and  that this  dissipation  per 
switching event is supplemented by the steady state 
dissipation. 

The  third  and remaining class is a “catch-all”; namely, 
those devices where  time variation is essential to the rec- 
ognition of information.  This  includes delay lines, and 
also carrier schemes, such as the phase-bistable system 
of von Neumann.6  The  latter affords us a very  nice illus- 
tration of the need for dissipative effects; most  other 
members of this third class seem too complex to  permit 
discussion in  simple physical terms. 

In  the von Neumann scheme,  which we shall  not 
attempt to describe here in complete detail, one uses a 
“pump” signal of frequency 0 0 ,  which  when  applied to a 
circuit  tuned to 00/2,  containing a nonlinear reactance, 
will cause  the spontaneous  build-up of a  signal at  the 
lower  frequency. The lower frequency signal has a  choice 
of two possible phases (180” apart at the lower fre- 
quency)  and this is the  source of the bistability. In  the 
von Neumann scheme the  pump is turned off after  the 
subharmonic has  developed, and  the  subharmonic sub- 
sequently  permitted to decay through circuit losses. This 
decay is an essential part of the scheme and  controls  the 
direction  in  which information is passed. Thus at first 
sight the circuit losses perform  an essential function. It 
can be  shown,  however, that  the signal reduction can be 
produced in a lossless nonlinear circuit, by a  suitably 
phased pump signal. Hence  it would seem adequate  to 
use lossless nonlinear circuits, and instead of turning  the 
pump  off, change the  pump phase so that  it causes signal 
decay  instead of signal growth. The directionality of 
information flow therefore does not really  depend on  the 
existence of losses. The losses do, however, perform 
another essential function. 

The von Neumann system depends  largely on a  cou- 
pling  scheme called majority  logic, in which one couples 
to three  subharmonic oscillators and uses the  sum of their 
oscillations to synchronize  a subharmonic oscillator 
whose pump will cause it to build up  at a later  time  than 
the initial three. Each of the  three signals which are 185 
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Figure 3 Negative resistance  characteristic  (solid 
line)  with load line (dashed). 
ZERO and ONE are  stable  states, U is unstable. 

F 

Figure 4 Force  versus distance  for  the bistable well 
of  Fig. 1. 
ZERO and ONE are the stable  states, U the 
unstable one. 

devices in  this first class. Computers  can be  built that 
contain either only cryotrons, or only  magnetic 

The second class of devices consists of structures which 
are in  a  steady (time  invariant) state, but  in a dissipative 
one, while holding on  to  information. Electronic flip-flop 
circuits, relays, and  tunnel diodes are in  this class. The 
latter, whose characteristic  with load line is shown in 
Fig. 3, typifies the behavior. Two stable  points of opera- 
tion  are  separated by an unstable  position, just as for  the 
device  in  Fig. 1. It is noteworthy that this class has  no 
known  representatives  analogous to Fig. 2.  All the active 
bistable devices (latches)  have built-in means for restora- 
tion to  the desired state. The similarity  between  Fig. 3 
and  the device of Fig. 1 becomes more conspicuous if we 
represent the bistable well of Fig. 1 by a diagram plotting 
force against  distance. This is shown  in  Fig. 4. The line 
F=O intersects the  curve  in three positions, much like 
the  load line (or a  line of constant  current), in Fig. 3. 
This  analogy leads us to expect that  in  the case of the 
dissipative device there will be transitions from  the 
desired state, to  the  other stable  state,  resulting from 
thermal agitation or  quantum mechanical  tunneling, 
much like for  the dissipationless case, and as has been 
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added together can  have  one of two possible phases. At 
most  two of the signals can cancel, one will always  sur- 
vive, and  thus  there will always be a phase determined 
for  the build-up of the next oscillation. The synchroniza- 
tion signal can,  therefore, have  two possible magnitudes. 
If all three of the  inputs agree we get  a  synchronization 
signal three times  as big as  in the case  where  only  two 
inputs  have a given phase. If the  subharmonic circuit is 
lossless the subsequent  build-up will then result in  two dif- 
ferent amplitudes,  depending on  the size of the initial syn- 
chronization signal. This,  however, will interfere with the 
basic operation of the  scheme  at  the next stage, where  we 
will want  to combine outputs of three oscillators  again, 
and will want all three  to be of equal amplitude. We  thus 
see that  the absence of the losses gives us an  output am- 
plitude from  each oscillator  which is too  dependent  on 
inputs  at  an earlier stage. While perhaps  the deviation 
from  the desired amplitudes might still be  tolerable after 
one cycle, these  deviations  could  build  up, through a 
period of several machine cycles. The losses, therefore, 
are needed so that  the unnecessary  details of a signal’s 
history will be  obliterated. The losses are essential for 
the  standardization of signals, a function which in past 
theoretical discussions has  perhaps  not received adequate 
recognition, but  has been very explicitly described  in  a 
recent paper by A. W.  LO.^ 

3. logical irreversibility 

In  the  Introduction we analyzed  Fig. 1 in connection 
with the  command RESTORE TO ONE and argued that this 
required  energy dissipation. We shall now  attempt  to 
generalize  this train of thought. RESTORE TO ONE is  an 
example of a logical truth  function which we shall call 
irreversible. We shall call a device logically irreversible if 
the  output of a  device  does not uniquely define the inputs. 
We believe that devices exhibiting logical irreversibility 
are essential to computing.  Logical irreversibility, we 
believe, in  turn implies physical irreversibility, and  the 
latter is accompanied by dissipative effects. 

We  shall think of a computer  as a  distinctly finite array 
of N binary  elements  which can hold information, with- 
out dissipation. We will take our  machine  to be  synchro- 
nous, so that  there is a well-defined machine cycle and  at 
the  end of each cycle the N elements are a complicated 
function of their  state  at  the beginning of the cycle. 

Our  arguments  for logical irreversibility will proceed 
on  three distinct levels. The first-level argument consists 
simply in  the assertion that present  machines do depend 
largely on logically irreversible  steps, and  that  therefore 
any  machine which copies the logical organization of 
present  machines will exhibit  logical  irreversibility, and 
therefore by the  argument of the  next Section, also physi- 
cal irreversibility. 

The second level of our  argument considers  a particu- 
lar class of computers,  namely those using logical func- 
tions of only one or two variables. After a machine cycle 
each of our N binary  elements is a function of the  state 
of at most  two of the binary  elements  before the  machine 
cycle. Now assume that  the  computer is logically reversi- 
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ble. Then  the  machine cycle maps  the 2N possible initial 
states of the  machine  onto  the same  space of 2N states, 
rather  than just  a  subspace thereof.  In  the 2N possible 
states each bit has a ONE and a ZERO appearing with equal 
frequency. Hence  the reversible computer  can utilize 
only  those truth  functions whose truth  table exhibits equal 
numbers of ONES and ZEROS. The admissible truth  func- 
tions then  are  the identity and negation, the EXCLUSIVE OR 

and its negation. These,  however, are  not a  complete  set8 
and  do  not  permit a synthesis of all other  truth functions. 

In  the  third level of our  argument we permit  more 
general devices. Consider, for example,  a particular three- 
input,  three-output device, i.e., a small  special purpose 
computer with three bit positions. Let p ,  q, and r be the 
variables before  the  machine cycle. The  particular  truth 
function  under consideration is the  one  which replaces 
r by p q if r =0, and replaces r by p . 4  if r= 1. The vari- 
ables p and q are  left unchanged during  the  machine 
cycle. We  can consider r as giving us a  choice of pro- 
gram,  and p ,  q as  the variables on which the selected 
program operates. This is a logically reversible device, 
its  output always defines its  input uniquely. Nevertheless 
it is capable of performing  an  operation  such as AND 
which is not, in itself, reversible. The  computer, however, 
saves  enough of the  input  information so that  it supple- 
ments the desired  result to allow reversibility. It is inter- 
esting to note,  however, that we did not “save” the 
program; we can only deduce  what  it was. 

Now consider  a more general  purpose computer, which 
usually has to go  through  many  machine cycles to carry 
out a program.  At first sight it may seem that logical 
reversibility is simply obtained by saving the  input  in 
some corner of the machine.  We  shall, however, label  a 
machine as  being logically reversible, if and  only if all its 
individual  steps are logically reversible. This  means  that 
every single time a truth  function of two  variables is 
evaluated we must  save some additional information 
about  the quantities  being operated on,  whether we need 
it  or not. Erasure, which is equivalent to RESTORE TO ONE, 

discussed in  the  Introduction,  is  not permitted. We will, 
therefore,  in a long program  clutter  up our machine bit 
positions with  unnecessary information  about intermedi- 
ate results. Furthermore if we wish to use the reversible 
function of three variables, which  was  just discussed, as 
an AND, then we must  supply  in the initial programming 
a separate ZERO for every AND operation which is subse- 
quently  required,  since the “bias” which programs  the 
device is not saved, when the AND is performed.  The 
machine  must  therefore  have a great deal of extra ca- 
pacity to store  both  the  extra “bias” bits and  the extra 
outputs. Can  it be given adequate capacity to  make all 
intermediate  steps reversible? If our machine  is capable, 
as machines are generally understood  to be, of a non- 
terminating program,  then  it is clear that  the capacity 
for preserving  all the  information  about all the inter- 
mediate  steps cannot be  there. 

Let us, however, not  take  quite  such  an easy way out. 
Perhaps it is just possible to devise a machine, useful  in 
the  normal sense, but  not  capable of embarking  on a 



nonterminating program. Let us take such a machine as it 
normally  comes, involving logically irreversible truth 
functions. An irreversible truth  function  can be made 
into a  reversible  one,  as we have  illustrated, by “embed- 
ding” it  in a truth  function of a large number of variables. 
The  larger  truth  function, however,  requires extra  inputs 
to bias it, and  extra  outputs  to hold the  information which 
provides the reversibility. What we now  contend is that 
this larger machine,  while it is reversible, is not a useful 
computing  machine  in  the normally  accepted sense of the 
word. 

First of all, in order  to provide  space for  the  extra 
inputs and  outputs,  the embedding requires knowledge of 
the  number of times each of the operations of the origi- 
nal (irreversible)  machine will be  required. The useful- 
ness of a computer stems,  however, from  the  fact  that  it 
is more  than just a table look-up device; it  can  do  many 
programs which  were not anticipated in  full detail  by the 
designer. Our enlarged machine  must  have a number of 
bit positions, for every  embedded device of the  order 
of the  number of program  steps and  requires a number of 
switching events during program  loading comparable  to 
the number  that  occur  during  the  program itself. The 
setting of bias during  program loading,  which  would 
typically consist of restoring  a  long row of bits to say 
ZERO, is just the type of nonreversible logical operation 
we are trying to avoid. Our unwieldy machine  has there- 
fore avoided the irreversible  operations during  the  run- 
ning of the  program, only at  the expense of added  com- 
parable irreversibility during  the loading of the  program. 

4. logical irreversibility and entropy generation 

The detailed connection between logical  irreversibility 
and  entropy changes remains  to be  made.  Consider  again, 
as an example, the  operation RESTORE TO ONE. The gen- 
eralization to  more complicated  logical  operations will 
be trivial. 

Imagine first a situation  in which the RESTORE opera- 
tion  has  already been carried  out  on  each  member of an 
assembly of such bits. This is somewhat  equivalent to  an 
assembly of spins, all aligned with the positive z-axis. In 
thermal equilibrium the bits (or  spins)  have two  equally 
favored  positions. Our specially prepared collections 
show much  more  order, and therefore a  lower tempera- 
ture  and  entropy  than is characteristic of the equilibrium 
state. In  the  adiabatic demagnetization method we use 
such a prepared spin state,  and  as  the spins become dis- 
oriented  they take  up  entropy  from  the  surroundings and 
thereby  cool off the  lattice  in which the spins are em- 
bedded. An assembly of ordered bits would act similarly. 
As the assembly thermalizes  and forgets its initial state 
the environment would be cooled off. Note  that  the impor- 
tant point here is not that all bits in the assembly initially 
agree  with each  other,  but only that  there is a single, 
well-defined initial state  for the  collection of bits. The 
well-defined initial state corresponds,  by the usual statis- 
tical  mechanical definition of entropy, S = k  log, W, to 
zero entropy. The degrees of freedom associated with the 
information  can,  through  thermal relaxation, go  to any 

one of 23 states (for N bits in the assembly) and there- 
fore  the  entropy  can increase  by kN log, 2 as the initial 
information becomes  thermalized. 

Note  that  our  argument  here does not necessarily 
depend  upon connections, frequently  made  in  other writ- 
ings, between entropy  and  information.  We simply think 
of each bit as being located  in  a physical system,  with 
perhaps a great  many degrees of freedom, in  addition to 
the relevant  one.  However, for  each possible physical 
state which will be interpreted  as a ZERO, there is a  very 
similar possible physical state  in which the physical sys- 
tem represents  a ONE. Hence a system  which is in a ONE 

state  has only half as  many physical states  available to  it 
as  a  system  which can  be  in a ONE or ZERO state. (We 
shall  ignore  in  this  Section and  in  the subsequent  con- 
siderations the case in which the ONE and ZERO are rep- 
resented by states with different entropy.  This case 
requires  arguments of considerably  greater  complexity 
but leads to similar physical conclusions.) 

In  carrying  out  the RESTORE TO ONE operation we are 
doing  the opposite of the thermalization. We  start with 
each bit in one  of two  states and  end  up with  a well- 
defined state. Let us view this operation in  some detail. 

Consider a statistical  ensemble of bits in  thermal 
equilibrium. If these are all reset to ONE, the  number of 
states covered  in the ensemble has been cut in half.  The 
entropy  therefore  has been reduced by k log, 2 = 0.693 1 k 
per bit. The  entropy of a closed system, e.g., a computer 
with its own batteries, cannot decrease;  hence  this entropy 
must appear elsewhere  as  a heating effect, supplying 
0.6931 kT per restored  bit to  the surroundings. This is, 
of course,  a minimum heating effect, and  our  method of 
reasoning gives no  guarantee  that this  minimum is in fact 
achievable. 

Our reset operation, in the preceding discussion, was 
applied to a thermal equilibrium ensemble. In actuality 
we would like to  know  what  happens  in a particular  com- 
puting circuit  which will work on  information which has 
not yet been  thermalized, but  at  any  one  time consists 
of a well-defined ZERO or a well-defined ONE. Take first 
the case  where,  as time goes on,  the reset operation is 
applied to a random  chain of ONES and ZEROS. We  can, 
in  the usual  fashion, take  the statistical  ensemble  equiva- 
lent  to a  time  average and  therefore conclude that  the 
dissipation per reset operation is the  same  for  the time- 
wise succession as for  the thermalized  ensemble. 

A computer, however, is seldom likely to  operate  on 
random data. One of the  two bit possibilities may  occur 
more  often  than  the  other,  or even if the frequencies are 
equal,  there  may be a correlation between successive bits. 
In  other words the digits which are reset may  not  carry 
the maximum possible information.  Consider the extreme 
case,  where the  inputs  are all ONE, and  there is no need 
to carry  out  any operation.  Clearly then  no  entropy 
changes occur  and  no  heat dissipation is involved. Alter- 
natively if the initial  states are all ZERO they  also carry  no 
information,  and  no  entropy  change is involved in reset- 
ting  them all to ONE. Note, however, that  the reset opera- 
tion which sufficed when  the  inputs were all ONE (doing 187 
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nothing) will not suffice when the  inputs  are all ZERO. 

When  the initial states  are ZERO, and we wish to go to 
ONE, this is analogous to a phase transformation between 
two  phases in equilibrium, and  can, presumably, be done 
reversibly and  without  an  entropy increase in  the uni- 
verse, but only  by a procedure specifically designed for 
that task. We  thus see that when the initial  states do  not 
have their fullest possible diversity, the necessary entropy 
increase in  the RESET operation  can be reduced, but only 
by taking  advantage of our knowledge about  the  inputs, 
and tailoring the reset operation accordingly. 

The generalization to other logically irreversible  oper- 
ations is apparent,  and will be illustrated by only one 
additional example.  Consider  a  very  small  special-purpose 
computer,  with  three binary  elements p ,  q, and r .  A ma- 
chine  cycle  replaces p by r, replaces q by r,  and replaces 
r by p - q. There  are eight possible initial  states, and in 
thermal equilibrium  they will occur with equal  proba- 
bility. How  much  entropy reduction will occur in  a 
machine cycle? The initial and final machine states are 
shown  in  Fig. 5. States a and /3 occur with  a  probability 
of % each:  states y and 8 have a  probability of occur- 
rence of % each. The initial entropy was 

Si=k log, W=-k$p log, p 

=-kX& log, #=3k log, 2 .  

The final entropy is 

Sf= -kXp loge p 

=-IC(#  log A+& log &++log  ++j$ log 3 ) .  
The difference &-Sf is 1.18 k. The  minimum dissipation, 
if the initial state  has  no useful information, is therefore 
1.18 kT. 

The question arises whether  the  entropy is really re- 
duced  by the logically irreversible  operation. If we really 
map  the possible initial ZERO states and  the possible initial 
ONE states into  the  same space, i.e., the space of ONE 

states, there  can be no question involved. But, perhaps, 
after we have  performed  the  operation  there  can be some 
small  remaining difference between the systems which 
were  originally  in the ONE state already and those that 
had  to be switched into it. There is no  harm in such 
differences persisting for some  time, but as we saw  in the 
discussion of the dissipationless subharmonic oscillator, 
we cannot tolerate a cumulative process, in which  dif- 
ferences  between  various possible ONE states  become 
larger  and larger according  to  their detailed  past histories. 
Hence  the physical “many  into  one” mapping,  which is 
the  source of the  entropy change,  need not  happen  in full 
detail during  the  machine cycle which performed  the logi- 
cal function. But it must  eventually take place, and this 
is all that is relevant for  the  heat generation  argument. 

5. Detailed analysis of  bistable well 

To supplement our preceding  general discussion we shall 
give a more detailed  analysis of switching for a system 
representable by a  bistable  potential well, as  illustrated, 
one-dimensionally, in Fig. 1, with a barrier  large com- 

BEFORE  CYCLE 

p q r  

AFTER C Y C L E  F , N A L  

P ,  q ,  ‘ 1  S T A T E  

Figure 5 Three input - three output device which 
maps  eight possible states onto only four 
different states. 

pared  to kT. Let us, furthermore, assume that switching 
is accomplished by the addition of a force which raises 
the energy of one well with  respect to  the  other, but still 
leaves a barrier which has  to be surmounted by thermal 
activation. (A sufficiently large  force will simply elimi- 
nate  one of the minima  completely. Our switching forces 
are presumed to be  smaller.) Let us now consider a 
statistical  ensemble of double well systems with  a  non- 
equilibrium  distribution and ask how rapidly  equilibrium 
will be approached.  This question  has been analyzed  in 
detail in  an earlier paper,2  and we shall therefore be satis- 
fied here  with  a  very simple kinetic analysis which leads 
to  the  same answer. Let  nA  and ng be the  number of en- 
semble members  in Well A and Well B respectively. Let 
UA and UB be  the energies at  the bottom of each well and 
U that of the  barrier which has  to be surmounted.  Then 
the  rate  at which  particles  leave Well A to go to Well B 
will be of the  form vnA exp [ - ( U -  UA)/kT].  The flow 
from B to A will be vnB exp [ - ( U -  U , )  /kT] . The two 
frequency  factors  have been taken  to be  identical. Their 
differences are,  at best, unimportant  compared  to  the 
differences in  exponents. This yields 

dnA 
dt 
“ --nAvexp[-(U-UA)/kT] 

dnB 
” 

dt 
- nAv exp [ - ( U -  UA)  /kT] 

We can view Eqs. (5.1)  as representing  a  linear  trans- 

formation  on (na ,  nB) ,  which yields - 9  - . What ( 2  2;) 
are  the characteristic values of the  transformation?  They 
are : 

X1=O, XP=-vexp[(U-UA)/kT] 

-veXp[ - (U-u~) /kT] .  

The eigenvalue X1=O corresponds to a  time-independent 
well population. This is the equilibrium  distribution 
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1 
kT 

nA=nB exp - [ UB- UA] . 

The remaining negative eigenvalue  must then be asso- 
ciated  with  deviations from equilibrium, and  exp( - A d )  
gives the  rate  at which these deviations  disappear. The 
relaxation  time T is therefore in terms of a quantity UO, 
which is the average of U A  and UB 

1 
-=hz=vexp[-(U-Uo)/kT 
T 

~ { e x p [ - ( U o - U ~ ) k T ] + ~ X p [ ( ~ o - ~ ~ ) k ~ ] } .  

(5 .2 )  

The  quantity Uo in Eq. (5 .2 )  cancels out,  therefore  the 
validity of Eq. (5 .2 )  does not depend on  the definition of 
Uo. Letting A = ) ( U A - U B ) ,  Eq. ( 5 . 2 )  then becomes 

1 
- - 2 ~ e x p [ - ( U - U ~ ) / k T ] c o s h A / k T .  (5.3) 

T o  first order in the switching force which  causes UA and 
UB to differ, ( U -  U o )  will remain unaffected, and there- 
fore  Eq. (5.3) can be written 

1 1  

T 

-" - cash A/kT , (5 .4 )  
TO 

where T~ is the relaxation  time for  the symmetrical  poten- 
tial well, when A =O.  This  equation demonstrates that  the 
device is usable. The relaxation  time r0 is the  length of 
time required by the bistable device to thermalize, and 
represents the maximum time over  which the device is 
usable. on  the  other  hand is the  minimum switching 
time.  Cosh A/kT  therefore represents the maximum num- 
ber of switching  events in  the lifetime of the information. 
Since  this can be  large, the device can be useful. Even if 
A is large enough so that  the first-order approximation 
needed to  keep U -  UO constant breaks  down, the expo- 
nential  dependence of cosh A/kT  on A, in  Eq. (5.3) will 
far outweigh the changes in  exp[ ( U -  &) kT],  and T ~ / T  

will still be a  rapidly  increasing function of A. 
Note  that A is one-half the energy  which will be dissi- 

pated in  the switching process. The  thermal probability 
distribution  within each well will be about  the  same 
before and  after switching, the only difference is that  the 
final well  is 2A lower than  the initial well. This energy 
difference is dissipated and corresponds to the one-half 
hysteresis loop area energy loss generally associated  with 
switching. Equation (5 .4 )  therefore confirms the em- 
pirically well-known fact  that increases  in  switching 
speed can only  be  accomplished at  the expense of in- 
creased  dissipation per switching  event. Equation (5.4) 
is, however, true only for a special  model and  has  no 
really general significance. To show  this  consider an 
alternative  model. Let us assume that  information  is 
stored by the position of a particle  along  a  line, and  that 
x =  * a  correspond  to ZERO and ONE, respectively. No 
barrier is assumed to exist, but  the  random diffusive 
motion of the particle is taken  to be slow enough, so that 
positions will be preserved for  an appreciable  length of 

time. (This model is probably closer to  the behavior of 
ferrites and ferroelectrics, when the switching occurs by 
domain wall motion, than  our preceding  bistable well 
model. The energy differences between a  completely 
switched and a  partially  switched ferrite  are  rather small 
and it is the existence of a low  domain-wall mobility 
which keeps the particle near its  initial  state, in  the ab- 
sence of switching forces,  and this  initial state  can almost 
equally well be a  partially  switched state, as a completely 
switched one. On  the  other  hand if one examines the 
domain wall mobility on a sufficiently microscopic  scale 
it is likely to  be related  again to activated motion past 
barriers.) In  that case, particles will diffuse a typical dis- 
tance s in  a time r-s2/2D.  D is the diffusion constant. 
The distance  which  corresponds to information loss is 
s-a, the associated relaxation  time is xo-a2/2D. In  the 
presence of a force F the particle  moves  with a velocity 
p F ,  where  the mobility p is given by the Einstein  relation 
as D / k T .  To move  a  particle under a  switching force F 
through a  distance 2a requires  a  time T ,  given by 

~ F T ,  = 2a , (5.5) 

or 

rS = 2 a / p F  . (5.6) 

The energy  dissipation 2A, is a 2aF.  This gives us the 
equations 

r8 = 2 a 2 / p A  , (5.7) 

r s / so=4kT/A ,  (5.8) 

which  show the  same direction of variation of rC with A 
as in  the case  with the  barrier,  but  do  not involve an expo- 
nential  variation  with A/kT. If all other considerations 
are ignored it is clear that  the energy bistable element of 
Eq. (5 .4 )  is much  to be preferred  to  the diffusion stabil- 
ized element of Eq. (5.8). 

The above  examples give us some insight into  the need 
for energy  dissipation, not directly  provided by the argu- 
ments involving entropy consideration. In  the RESTORE TO 

ONE operation we want  the system to settle into  the ONE 

state regardless of its initial  state.  We do this by lowering 
the energy of the ONE state relative to the ZERO state. 
The particle will then go to this  lowest  state, and  on  the 
way dissipate any excess energy it may  have had  in its 
initial state. 

6. Three sources of error 

We  shall in this  section attempt to survey the relative 
importance of several possible sources of error in the 
computing process, all intimately  connected  with our  pre- 
ceding  considerations. First of all the  actual time allowed 
for switching is finite and  the relaxation to  the desired 
state will not  have  taken place  completely. If T,  is the 
actual time during which the switching force  is applied 
and rs is the relaxation time of Eq. (5 .4 )  then exp 
( -T,/T~) is the probability that  the switching will not 
have taken place. The second source of error is the  one 
considered in detail in  an earlier paper by J. A. Swanson,s 
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and represents the  fact  that TO is finite and information mitted by Eq. (5.4), is small compared to unity. 
will decay while it is supposed to be sitting quietly in its Consider now, instead, the diffusion stabilized element 
initial  state. The relative importance of these two errors of Eq. (5.8). For it, we can find instead of Eq.  (6.4)  the 
is a matter of design compromises. The time T,, allowed relationship 

available for a program is, however, less than T O ,  the relax- 
ation  time for stored  information, and therefore increas- 
ing the time allowed for switching decreases the number 
of steps in the  maximum possible program. 

A third source of error consists of the  fact  that even if 
the system is allowed to relax completely during switching 
there would still be a fraction of the ensemble of the 
order  exp(  -2A/kT) left in the  unfavored initial state. 
(Assuming A>>kT.) For  the purpose of the  subsequent 
discussion let us  call this Boltzmann error. We shall show 
that  no  matter how the design compromise between the 
first two kinds of errors is made, Boltzmann error will 
never be dominant. We shall compare  the  errors in a 
rough  fashion,  without  becoming involved in  an enumera- 
tion of the  various possible exact histories of information. 

To carry  out this analysis, we shall overestimate Boltz- 
mann  error by assuming that switching has  occurred in 
every machine cycle in the history of every bit. It is this 
upper  bound  on  the Boltzmann error which will be shown 
to be negligible, when  compared to  other errors. The 
Boltzmann error probability,  per switching event is 
exp(  -2A/kT).  During  the  same switching time bits 
which are  not being switched are decaying away at  the 
rate  exp( - t / ~ ~ ) .  In  the switching time T,, therefore, 
unswitched bits have  a  probability  TJTO of losing their 
information. If the Boltzmann error is to  be dominant 

T8/~0<exp(-2A/kT) . (6.1) 

Let us specialize to  the bistable well of Eq.  (5.4).  This 
latter  equation  takes (6.1 ) into the  form 

and  the right-hand  side is again  large compared  to  the 
Boltzmann error,  exp( - 2A/kT).  The alternative argu- 
ment in terms of the accumulated  Boltzmann error exists 
also in this case. 

When we attempt to consider a more realistic machine 
model, in which switching forces are applied to coupled 
devices, as is done  for example in diodeless magnetic 
core logic,4 it becomes difficult to maintain analytically a 
clean-cut breakdown of error types, as we have done  here. 
Nevertheless we believe that there is still a somewhat 
similar  separation which is manifested. 

Summary 

The information-bearing degrees of freedom of a  com- 
puter  interact with the  thermal reservoir represented by 
the remaining degrees of freedom.  This  interaction plays 
two roles. First of all, it  acts  as  a sink for  the energy 
dissipation involved in  the computation. This energy dis- 
sipation has  an unavoidable  minimum arising from the 
fact  that  the computer  performs irreversible operations. 
Secondly, the interaction  acts as a source of noise causing 
errors. In particular  thermal fluctuations give a supposedly 
switched element a small probability of remaining in its 
initial state, even after  the switching force has been ap- 
plied for a  long time. It is shown, in terms of two simple 
models, that this source of error is dominated by one of 
two other  error sources: 

1) Incomplete switching due  to inadequate  time allowed 

(6.2) 
for switching. 

2 )  Decay of stored  information due  to  thermal fluctua- 
or equivalently tions. 

-<&exp(-A/kT) . (6.3)  and  the requirements for energy dissipation are  on a scale 
which is entirely negligible in present-day  computer  com- 

NOW consider the relaxation to  the switched state. The er- ponents. The dissipation as calculated, however, is an 
Tor incurred due  to incomplete  relaxation is exp( - T,/T,), absolute  minimum.  Actual devices which are  far  from 
which  according to Eq. (6.3) satisfies minimal in size and  operate  at high speeds will be likely 

T8 It is, of course, apparent  that  both  the thermal noise 
7,  

to require  a much  larger energy dissipation to serve the 
(6'4) purpose of erasing the unnecessary details of the  com- 

The right-hand  side of this  inequality  has as its argument puter's past history. 
+exp(  -A/kT) which is less than 3. Therefore  the right- 
hand side is large compared  to exp ( - 2A/kT),  the Boltz- 
mann error, whose exponent is certainly  larger than unity. 
We have thus shown that if the Boltzmann error domi- Acknowledgments 
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