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Abstract—The Leggett-Garg inequalities were originally intro-
duced for experimentally testing a possible break of the quantum
evolution in mesoscopic systems. In this paper, we take a different
point of view by focusing on faithful classical simulations of
sequential quantum measurements. In this context, the violation
of Leggett-Garg inequalities implies that classically simulated
quantum measurements induce perturbations into the subsequent
evolution of the classical variables. We show that the implication
is even stronger and a measurement erases previous information
by performing a partial reset on the classical state. Thus, the
measuring device acts as a low-temperature bath absorbing
entropy from the measured system. Information erasure is a
form of preparation contextuality. Our proof is straightforward
if one assumes that maximal ignorance of the quantum state is
compatible with maximal ignorance of the classical state. We also
employ a weaker hypothesis.

I. INTRODUCTION

The Leggett-Garg (LG) inequalities were originally intro-
duced in a quantum-foundational context for experimentally
testing the emergence of macroscopic realism in mesoscopic
systems, such as superconducting qubits [1]. First, Leggett
and Garg formulated two principles that should hold in the
macroscopic world and may be justified by models of wave-
function collapse. The two assumptions are called by Leggett
and Garg (A1) macroscopic realism and (A2) noninvasive
measurability. Then, from these assumptions, Leggett and
Garg derived inequalities which are violated by quantum sys-
tems undergoing a unitary evolution between measurements.
The experimental violation of the inequalities would be a proof
of the failure of one of the two assumptions.

In this paper, we focus on the information-theoretic problem
of classically simulating sequential quantum measurements.
From this point of view, we take for granted assumption (A1)
and the unitary evolution between measurements. Our purpose
is to show that the violation of LG inequalities implies more
than a mere break of assumption (A2). The interaction with a
measuring device can be invasive by increasing, preserving,
or decreasing the entropy of the classical state, provided
that the measurement outcome is forgotten. In the latter
case, we say that the measurement erases information. Since
the von Neumann entropy never decreases after a projective
measurement (provided that the outcome is ignored), one may
expect that this feature is inherited by a faithful classical causal

simulation of a sequence of quantum measurements. However,
we prove that the perturbation induced by a measurement
cannot be reproduced classically without a partial reset of
the classical state of the measured system. Classically, the
measuring device acts as a low-temperature bath absorbing
entropy from the system. Information erasure comes from the
quantum violation of the LG inequalities and an additional
hypothesis. The proof is straightforward if we assume that
maximal ignorance of the quantum state is compatible with
maximal ignorance of the underlying classical state. A weaker
hypothesis is the assumption that the entropy of the system is
bounded in the simulation. The reset of the quantum state after
a measurement is mirrored by the partial reset of the classical
state in a classical causal simulation. In Ref. [2], it was shown
that the erasure of just one bit suffices to account for the
outcome statistics of a two-state system, the measurements
being performed at two arbitrary times. Interestingly, the de
Broglie-Bohm theory does not satisfy the additional hypothesis
of finiteness of the entropy and, indeed, measurements change
the state, but do not erase information. The evasion of our
conclusion on information erasure recalls the Maxwell demon
with infinite memory, who can perform arbitrary operations
without erasing its internal state.

The paper is organized as follows. In Sec. II, we intro-
duce the LG inequalities and provide a link to the Bell-like
Clauser–Horne–Shimony–Holt (CHSH) [3] inequality. This
link suggests our main result on information erasure. In
Sec. III, we introduce the classical model simulating sequences
of projective measurements. In Sec. IV, the violation of LG
inequalities is rephrased in the framework of the classical
model. In Sec. V, we prove the theorem on information
erasure, which is physically interpreted as entropy flow from
the system to the low-entropy measuring device. We conclude
the section by discussing the relation between information
erasure and preparation contextuality [4].

II. LEGGETT-GARG INEQUALITY

In this section, we introduce Leggett-Garg (LG) inequalities
and discuss their relationship with the Bell-like CHSH inequal-
ity satisfied by local correlations. The LG inequalities refer to
a scenario in which a projective measurement Â is executed
at two times tk and tl chosen among a set of n values, say



t1, . . . , tn. A measurement at time tk gives some value ak =
±1. Ruling out retrocausality, assumptions (A1-A2) imply that
there is a joint probability distribution ρ(a1, . . . , an) of the
values a1, . . . , an independently of the actual execution of the
measurements. If assumption (A2) is dropped, the joint prob-
ability takes the more general form ρ(a1, . . . , an|s1, . . . , sn),
where sk is a binary variable encoding the information on the
actual execution of the k-th measurement. If the measurement
is executed, then sk is set equal to 1, otherwise sk is set equal
to 0. The two assumptions can be replaced by the condition

ρ(a1, a2, . . . |s1, s2, . . . ) = ρ(a1, a2, . . . ), (1)

which explicitly rules out also retrocausal influence. This
equation implies the inequality [1]

C1,2 + C2,3 + C3,4 + Cn−1,n − C1,n ≤ n− 2 (2)

where Ci,j are the correlation functions ⟨aiaj⟩.
For n = 4, the LG inequality takes the form of CHSH

inequality [3]. This similarity is not a coincidence and it
becomes clearer if we swap t2 and t3. We have

C1,3 + C2,3 + C2,4 − C1,4 ≤ 2. (3)

There are two sets of times {t1, t2} and {t3, t4} such that
the correlations in the inequality are between an element in
one set and an element in the other. We can reframe the
narrative as follows. There are two parties, Alice and Bob.
Alice chooses to perform a measurement at time t1 or t2.
Subsequently, Bob chooses to perform a measurement at time
t3 or t4. In this form, the procedure is conceptually identical
to the CHSH scenario in which Alice and Bob choose one of
two different measurements. However, the CHSH inequality
is derived from the slightly different assumption of locality,
which can be stated as follows. The outcomes of Alice and
Bob only depend on their own choice and some global random
variable, say λ, which is uncorrelated with s1, . . . , s4. In the
LG scenario, the assumption leads to the equation

ρ(a1, . . . , a4|s1, . . . , s4) =∫
dλρ(a1, a2|s1, s2, λ)ρ(a3, a4|s3, s4, λ)ρ(λ).

(4)

In general, the distribution ρ(a1, . . . , a4|s1, . . . , s4) does not
satisfy condition (1), as the assumption of locality does not
forbid an influence from t1 to t2 and from t3 to t4. But
this "local" invasivity is irrelevant since Ineq. (3) does not
contain the correlations C1,2 and C3,4. Indeed, the conditional
distribution defined by Eq. (4) is operationally equivalent to
an unconditional distribution. Let us see this explicitly. Since
Bob exclusively executes one measurement at time t3 or t4,
we always have s3 ̸= s4. On Alice’s side, we also have
s1 ̸= s2. Thus, we can replace the probability distributions
ρ(a1, a2|s1, s2, λ) and ρ(a3, a4|s3, s4, λ) with∑

a′
1,a

′
2

ρ(a1, a
′
2|1, 0, λ)ρ(a′1, a2|0, 1, λ) ≡ ρ(a1, a2|λ)

and ∑
a′
3,a

′
4

ρ(a3, a
′
4|1, 0, λ)ρ(a′3, a4|0, 1, λ) ≡ ρ(a3, a4|λ),

respectively. These replacements do not change the observed
correlations. Thus, the probability distribution of the four
outcomes∫

dλρ(a3, a4|λ)ρ(a1, a2|λ)ρ(λ) ≡ ρ(a1, a2, a3, a4) (5)

gives the same correlations as the original distribution
ρ(a1, . . . , a4|s1, . . . , s4), Hence, also the latter satisfies in-
equality (3).

The analogy with the CHSH inequality shows an interesting
consequence of the violation of the LG inequalities. Namely,
a classical causal simulation of sequential measurements must
employ some information flow from the past to the future even
if the initial quantum state has maximal entropy and signaling
is not possible. We will come back to that in Sec. IV.

A. Quantum violation of the LG inequalities

Let us show that quantum theory violates the LG inequality
with four times t1, . . . , t4. The unitary evolution is taken time-
independent with Hamiltonian equal to

Ĥ = |1⟩⟨−1|+ | − 1⟩⟨1|, (6)

so that the correlation between ak and al at times tk and tl is

⟨akal⟩ = cos[2(tk − tl)]. (7)

The left-hand side of the LG inequality is maximal at tk+1 =
π/8 + tk with k ∈ {1, 2, 3}. The maximum is the Tsirelson
bound 2

√
2, which violates the locality bound 2.

We said that some information about Alice’s choice needs
to be communicated to Bob if the LG are violated. Is this
information necessary for every value of t1 and t2 on Alice’s
side? To answer this question, let us find the values of t1 and
t2 such that the inequality is violated for some t3 and t4.
Maximizing the left-hand side of the LG inequality with
respect to t3 and t4, we get the value

2 (| cos(t2 − t1)|+ | sin(t2 − t1)|) (8)

which always violates the LG inequality, apart from the
values t2 = t1 + m1π/2, m1 being an integer. These values
correspond to the case in which the measurements at time t1
and t2 project on the same basis. Thus, whenever the two
measurements do not commute, there must be some finite
amount of communication from Alice to Bob.

For later convenience, we summarize the previous state-
ments in the following.

Lemma 1: Let us consider the LG scenario with 4 times
t1, . . . , t4. The evolution is generated by Hamiltonian (6). If
the unitary transformation from t1 and t2 does not preserve
the set {|1⟩, | − 1⟩}, then there are two values of t3 and t4
such that the LG inequality (3) is violated.

III. CLASSICAL CAUSAL SIMULATION

In this section, we introduce a classical model simulating
a projective measurement Â. More precisely, the model sim-
ulates a process of sequential quantum measurements Â on
a unitarily evolving quantum system. We call this process a
quantum protocol.



Definition 1: (Schrödinger picture) A quantum protocol is
defined by a Hermitian operator Â of rank n, a sequence
of execution times t1 < t2 < t3 < . . . , a rank-n density
operator ρ̂ at some initial time t0 ≤ t1 and by the unitary
evolutions from time tk to tk+1 with k ∈ {0, 1, 2, 3, . . . }.
The projective measurement Â is executed at times t1, t2, . . . ,
so that a sequence of measurement-outcomes a1, a2, . . . is
generated.
There is some excess of irrelevant information in this defini-
tion. Instead of specifying the execution times and the unitary
evolutions, we can just specify a sequence of measurements
in the Heisenberg picture.

Definition 2: (Heisenberg picture) A quantum protocol is
defined by a sequence of projective measurements Â1, Â2, . . .
of rank n and an initial rank-n density operator ρ̂. The
measurements generate a sequence of outcomes a1, a2, . . . .

The causal simulation of a quantum protocol is a classical
rephrasing of each step of the process. The state of the
system at each time is encoded by some element λ in a
space Λ. Employing popular terms in quantum foundation,
we call λ and Λ an ontic state and its ontological space,
respectively. The space Λ must be uncountably infinite in
a Markov simulation [5], [6], we have to define a measure
on it such that unitary evolutions are associated to bijective
volume-preserving evolutions in the ontological space. Thus,
the differential entropy

H(ρ) ≡ −
∫

dλρ(λ) log ρ(λ) (9)

defined on this measure is constant under unitary transforma-
tions of the quantum state. We also assume that the ontological
space has finite volume, so that the entropy is bounded from
above. For example, the space may be a compact subset of
an Euclidean space or a hypersphere. Our main objective is
to show that measurements reduce this entropy under some
suitable hypothesis. We define the following.

Model 1: Classical causal simulation of the quantum pro-
jective measurement Â:

• At each time, the classical state of the system is some
element λ of a measurable ontological space Λ with a
finite measure (volume).

• A unitary evolution is simulated by a reversible volume-
preserving transformation in Λ.

• The execution of the measurement Â modifies an ingoing
value λin ∈ Λ to a outgoing value λout according to a
conditional probability pM (λout|λin). The measurement
outcome a is generated with a conditional probability
ρ(a|λin).

• The value of λ is statistically independent of the ex-
ecution of future measurements and unitary evolutions
(causality).

Model 1 defines building blocks for simulating unitary evolu-
tions and measurements. These blocks can be freely chosen to
build a simulation protocol of any sequence of measurements
on a unitarily evolving quantum system.

The model provides a faithful simulation of a projective
measurement Â if every quantum state is associated to a
probability distribution ρ(λ) such that the outcomes of every
sequential set of subsequent quantum measurements of Â are
exactly reproduced by the corresponding simulation protocol.

Given our model, let us consider the LG scenario, in which
the actual execution of a measurement at time tk is controllable
and encoded in the binary variable sk. The value of sk is 1 or
0 if the measurement has been performed or not, respectively.
Let λk be the classical state just before time tk. The causal
relation between λk and λk+1 is described by a conditional
probability of the form

PÂk
(λk+1|λk, sk) ≡

{
δ(λk − λk+1) sk = 0

ρÂk
(λk+1|λk) sk = 1

(10)

where Âk is the k-th measurement operator in the Heisenberg
picture. Ignoring the outcomes of the measurements, the
overall process with n times is described by the Markov chain

ρ(λ1, . . . , λn+1|s1, . . . , sn) ≡
PÂn

(λn+1|λn, sn) . . . PÂ1
(λ2|λ1, s1)ρ(λ1),

(11)

where ρ(λ1) is the probability distribution of the ontic state
before the first measurement. Employing causality, this distri-
bution does not depend on s1, . . . , sn.

IV. REPHRASING LG INEQUALITIES

In this section, we prove that, given two non-commuting
measurements Â1 and Â2, the outgoing distribution ρ(λ) after
Â1 is always different from the distribution emerging after Â2,
regardless of the quantum states before the measurements. In
other words, the state λ always contains information on which
measurement is actually executed. This property captures the
very essence of the quantum violation of LG inequalities in
the framework of Model 1.

Let ρ1(λ) and ρ2(λ) be the ingoing distributions before
measurement Â1 and Â2, respectively. The transition prob-
abilities ρÂ1

(λ|λin) and ρÂ2
(λ|λin) are associated to the two

measurements.
Definition 3: Given the two measurements Â1 and Â2, a

classical channel M [Â1, Â2] : R → Λ from a bit r ∈ {1, 2} ≡
R to an ontic state λ ∈ Λ is defined by the conditional
distribution

ρ(λ|r) =
∫

dλinρÂr
(λ|λin)ρr(λ

in). (12)

In general, there are infinite channels M associated to a
pair of measurements, as they may depend on the probability
distributions prior to the measurement.

The violation of LG inequality (3) implies the following.
Theorem 1: Given two incompatible measurements Â1 and

Â2 in one-qubit Model 1, the conditional probability ρ(λ|r)
of the channel M [Â1, Â2] is different from ρ(λ).
Proof. As implied by Lemma 1, there are two other mea-
surements Â3 and and Â4 such that the LG inequality (3) is
violated for the sequence of measurements Â1, . . . , Â4. Two
of the four measurements are executed in each instance. One



measurement is chosen in the set SA = {Â1, Â2}, the other
in SB ∈ {Â3, Â4}. Let us denote by aA and bB the outcome
of the measurement in the set SA and SB , respectively. The
probability distribution of the outcomes has the form

ρ(aA, aB |rA, rB) ≡∫
dλdχρ(aB |λ, rB)ρ(aA|χ, rA)ρ(λ|χ, rA)ρ(χ),

(13)

where rA, rB ∈ {1, 2} and the executed measurements are
ÂrA and ÂrB+2. The variable χ and its distribution ρ(χ)
summarize the information about the ontic state prior the first
measurement. Let us assume that the statement is false, then

ρ(λ|rA)|rA=1 = ρ(λ|rA)|rA=2 .

By Bayes’ theorem, the distribution ρ(aA, aB |rA, rB) takes
the form

ρ(aA, aB |rA, rB) ≡∫
dλdχρ(aB |λ, rB)ρ(aA|λ, χ, rA)ρ(λ|rA)ρ(χ).

(14)

Since ρ(λ|rA) = ρ(λ), we have

ρ(aA, aB |rA, rB) ≡∫
dχ̄ρ(aB |χ̄, rB)ρ(aA|χ̄, rA)ρ(χ̄)

(15)

for some shared random variable χ̄. As discussed in Sec. II,
this distribution satisfies the LG inequality, in contradiction
with the premise. □

This theorem captures the very essence of the quantum
violation of LG inequalities. It is plausible that the theorem
holds for any dimension of the Hilbert space, but we consider
only the case of single qubits.

V. INFORMATION ERASURE

In Sec. II we remarked that the analogy between Leggett-
Garg and CHSH inequalities suggests something interesting
about the kind of invasivity a quantum measurement exerts on
the measured system. An interaction can modify a system by
increasing, preserving, or decreasing the entropy. The latter
case is conventionally called information erasure, in the sense
that the system undergoes some degree of state reset. The
violation of the LG inequalities can be reproduced by the
classical model 1 only if there is a communication of the
choices of s1, . . . , sn flowing from the past to the future. This
communication is implied by Theorem 1. However, commu-
nication is possible only if the carrier of the information has
initially a low entropy or its state can be erased by a low-
entropy external device. Suppose that the initial quantum state
has maximal von Neumann entropy and that this corresponds
to maximal ignorance of the classical state. From the violation
of the LG inequalities, the execution of a measurement must
be encoded in the classical state λ of the system, which is the
only carrier of information in the model. Since the system has
initially maximal entropy, the measuring device has to exert
an information erasure on the system.

Before proving the information-erasure theorem, let us give
some definitions. Let ρuni(λ) be the probability distribution
of the ontic state which is uniform with respect to the space
measure. We say that ρuni represents the state of maximal

ignorance of the ontic state. Information erasure can be proved
by assuming the following.

Assumption 1: A quantum state with maximal von Neumann
entropy, say ρ̂max, is compatible with maximal ignorance of
the ontic state.
The state of maximal ignorance does not need to be ‘phys-
ically’ attainable in the model as a convex composition of
distributions obtained by sequence of measurements. It is
sufficient that the uniform distribution exists and generates
faithfully the statistics of the quantum state ρ̂max.

Definition 4: A measurement Â erases information in
Model 1 if the entropy of

ρ(λ) ≡
∫

dλinρÂ(λ|λ
in)ρ0(λ

in) (16)

is lower than the entropy of some distribution ρ0(λ
in) com-

patible with a quantum state.
Theorem 2: If Assumption 1 holds in one-qubit Model 1,

then measurements erase information.
Proof. Let us prove that a measurement Â1 erases information
in Model 1. Let the initial probability distribution be ρuni(λ).
A second measurement Â2 is defined by some unitary evolu-
tion and subsequent measurement of Â1 such that Â1 and Â2

are incompatible. Let us assume that measurement Â1 does not
erase information. Thus, the outgoing probability distribution
has maximal entropy, that is, it is equal to ρuni(λ). Since
unitary evolutions preserve the distribution ρuni, also mea-
surement Â2 has outgoing distribution ρuni, in contradiction
with Theorem 1. Thus, Â1 erases information. □

Provided that Theorem 1 holds in any dimension of the
Hilbert space, the information-erasure theorem can be trivially
extended to the case of many qubits. In Ref. [2], it was shown
that the erasure of just one bit suffices to account for the
outcome statistics of a two-state system, the measurements
being performed at two arbitrary times.

A. Weakening Assumption 1

Assumption 1 is necessary to infer information erasure
of measurements. Indeed, the ontic state λ cannot contain
information about the execution of previous measurements
without erasure if the initial ontic state is completely unknown.
A completely unknown initial state λ acts like the cryptograpic
key in the one-time-pad algorithm. Now, suppose that every
probability distribution ρ(λ) associated with ρ̂max does not
have maximal entropy. For example, we could have a peaked
distribution ρ0 on the ontological space Λ. After the mea-
surement, this distribution can be shifted without decreasing
its entropy. The resulting distribution ρ1 is distinct from the
initial distribution, so that it contains information about the
actual execution of the measurement. Thus, in principle, mea-
surements without information erasure are compatible with
quantum theory. However, note that the statistical mixture of
the distributions ρ0 and ρ1 has higher entropy with respect
to the initial distribution ρ0. Imagine the scenario in which a
measurement Â is performed with some probability, say 1/2,
at time t and the measurement does not erase information.



The entropy of the ontic state after the measurement generally
increases. Sequentially executing this procedure with incom-
patible measurements, the overall increase of the entropy can
be arbitrarily large. Suppose now that the quantum state ρ̂
is compatible with a probability distribution ρ(λ) with finite
entropy, that is, the entropy is not −∞. After a finite number
of measurements, the entropy saturates to a maximum value,
after which information erasure is necessary to simulate the
quantum statistics of subsequent measurements. Thus, let us
replace Assumption 1 with the following.

Assumption 2: There is a quantum state ρ̂ compatible with
a distribution ρ(λ) whose entropy is finite.

Theorem 3: If Assumption 2 holds in one-qubit Model 1,
then measurements erase information.
Proof. Let us assume that measurement Â does not erase
information. We execute the measurement at each time of a
sequence t1, t2, . . . with probability 1/2. The unitary evolution
between two consecutive times tk and tk+1 is taken indepen-
dent of k. In the Heisenberg picture, the measurements are
associated to the operators Â1, Â2, . . . . There is a unitary
evolution such that two consecutive measurements Âk and
Âk+1 are incompatible for every k ≥ 1. By Assumption 2,
the initial distribution has finite entropy, say Smin. As the
unitary evolution and the measurements cannot decrease the
entropy, the entropy is finite at every time. Let us show that
the entropy increases from time tk to time tk+1 for every
k ≥ 1. Let ρ0(λ) be the probability distribution just before
time tk. We have 4 cases occurring each with probability
1/4: (1) No measurement is executed at times tk and tk+1.
(2) Both the measurements are executedr. (3) Only the mea-
surement Âk is executed. (4) Only the measurement Âk+1

is executed. The four cases are associated to 4 outgoing
distributions, say ρ1, . . . , ρ4, just after time tk+1. Since the
measurements do not decrease the entropy, the probability
distribution 1/4

∑4
k=1 ρk has the same entropy of ρ0 only

if ρk = ρl for k, l ∈ {1, 2, 3, 4}. This is in contradiction
with Theorem 1. Thus, the entropy just after time tk+1 is
greater than the entropy just before tk. The entropy difference
is lower-bounded by some constant σ > 0 for every pair. Thus,
the entropy increases at least linearly along the sequence. But
this is not possible because the entropy is upper bounded
(first condition in Model 1). Thus, the measurement Â erases
information. □

It is possible to prove that the quantum state ρ̂max with
maximal entropy is associated with a probability distribution
ρmax(λ) whose entropy is decreased by the measurement.

B. Interpretation of information erasure

Information erasure can have a simple justification once
we consider the overall process behind a measurement. No
measurement is possible if some external system with lower
entropy is not available. A measurement device can be mod-
eled as a pointer at some rest position and getting entangled
with the measured system after an interaction. This modeling
of a quantum measurement does not work if the initial state
of the pointer is completely unknown. Thus, the device can

be seen as a kind of ‘low temperature’ bath that ‘cools’ the
system during the measurement with a transfer of entropy from
the latter to the former.

C. Preparation contextuality

In Ref. [4], Spekkens showed that any ontological rephras-
ing of quantum theory is preparation contextual. Namely,
there are mixed quantum states whose associated probability
distribution ρ(λ) on the ontological space depend on the
preparation context. For example, there are infinite ways
for representing a maximally mixed state ρ̂max as convex
combination of pure states. In a non-contextual ontological
theory, these different representations should correspond to
the same distribution ρ(λ). This turns out to be false. Indeed,
information erasure is an example of preparation contextuality.
Suppose that a qubit is in the maximally mixed state ρ̂max.
There is a probability distribution ρmax(λ) associated to
ρ̂max such that a measurement Â transforms ρmax(λ) to a
different distribution with lower entropy. Since we trace out
the outcome, the quantum state after the measurement is still
ρ̂max. Thus, we have two preparation procedures which are
operationally identical, but generate different distributions. In
one procedure, we take a maximally mixed quantum state and
we do nothing else. In the second procedure, we take the
maximally mixed state, we execute the measurement Â and
forget the result.

VI. CONCLUSIONS

Considering classical simulations of multiple projective
measurements, we have shown that the interaction of a system
with a measuring device erases classical information carried
by the simulated system. This can be interpreted as a flow of
entropy from the system to the device. The proof needs an
assumption of finiteness of the entropy. Information erasure
emerging in classical simulations is not displayed at the level
of the quantum formalism, in which projective measurements
never reduce the Neumann entropy if their outcome is ignored.

In perspective, it is useful to quantify the minimal amount
of information that a measurement must erase in a classical
sinulation. These further studies have relevance in quantum
communication complexity and, potentially, in quantum cryp-
tography. For example, information erasure implies that there
are scenarios in which quantum channels offer an advantage
over classical channels. Finally, information erasure comes
from the assumption of causality. We leave open the extension
of these results to more general non-causal models.
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