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The converse of Landauer’s principle states that (the physical representation of) certain bit-strings
(e.g., 0N ) can be used to extract work from the environment. To the general question what the
work value of a classical string S ∈ {0, 1}N is, there have been different answers invoking algorithmic
complexity and conditional entropy about S from the extractor’s viewpoint, respectively. We har-
monize the results, in particular by making explicit what “knowing S” can mean. We find that the
work value of S does not depend on some probability distribution around it, but only on two fixed
strings: S as well as the initial state of the device carrying out the work-extraction computation.
The context-free view extends to the notion of a macrostate, the second law of thermodynamics,
randomness, and quantum non-locality.

I. LANDAUER’S PRINCIPLE AND ITS
CONVERSE

According to Landauer [13], “information is physi-
cal:” Any information generation, storage, processing,
and transmission is ultimately physical and must be un-
derstood as such. A consequence of this insight is Lan-
dauer’s principle [12]: Erasing a bit of information costs
an amount of at least kT ln 2 of free energy which is then
dissipated as heat to the environment (of temperature T ).
Here, “erasing a bit” stands for “forcing the correspond-
ing binary degree of freedom into the state 0;” the fact
has been derived by Landauer from the second law of
thermodynamics: The reduction of entropy due to the
loss of the binary degree of freedom must be compen-
sated by an increase, of at least the same amount, in
environmental entropy.

Landauer’s principle led the way to the solution of the
famous problem of Maxwell’s demon [4]: If the “demon’s
brain” is taken into account, then the order she cre-
ates outside is reflected by the disorder appearing inside
her — the latter in the form of complex data depending
on the demon’s observations and in the end represented
within her internal state since they are required for guid-
ing her actions throughout the sorting procedure. If we
assume that the demon’s (N -bit) memory is in the ini-
tial state 0N , then one can regard this 0-string, which
is “used up” in the end, as the resource required by the
demon for her order-creating action. Indeed, the con-
verse of Landauer’s principle states that the string 0N —
more precisely, a physical representation of it1 — has a
fuel value of kTN ln 2: It allows for transforming this
amount of environmental heat into work. The situation
has also been discussed by Szilárd [14] if the memory cell
is a single-molecule gas.

We address the question what in general the fuel value
is of (a physical representation of) a classical string S.

1 The string 0N is, physically, special here in the sense that there
exists a “constant-size” machine, including the program, that can
actually generate it. This is important to note since a priori, the
semantics — which of the two states is 0, which is 1? — of the
different bit positions is arbitrary.

Since the reversible extraction of the string 0N from S is
equivalent to the gain of free energy of kTN ln 2, we have
a first answer: Work extraction is data compression.

II. WORK EXTRACTION: STATE OF THE ART

A. The Results by Bennett and by Zurek

Bennett [3] claimed the fuel value of a string S to be its
length minus the algorithmic entropy, the latter being the
length of the shortest program that lets a fixed universal
Turing machine U output S. The algorithmic entropy
of S has also been called Kolmogorov complexity K(S)
of S [11]:

W (S) = (len(S)−K(S))kT ln 2 .

Bennett’s argument is that (the physical representation
of) S can be — logically, hence, thermodynamically [9] —
reversibly mapped to the string P ||000 · · · 0, where P is
the shortest program for U generating S and the length
of the generated 0-string is len(S)−K(S) (see Figure 1).
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Figure 1. Bennett’s argument

It was already pointed out by Zurek [17] that whereas it
is true that the reverse direction exists and is computable
by a universal Turing machine, its forward direction, i.e.,
obtaining P from S, is not. This means that the “demon”
that can carry out the work-extraction computation on S
from scratch does not exist under the Church-Turing hy-
pothesis. We will see, however, that Bennett’s value rep-
resents an upper bound on the fuel value of S.
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B. The Results by Szilárd and by Dahlsten et al.

Dahlsten et al. [8] follow Szilárd [14] in putting the
knowledge of the demon extracting the work to the center
of their attention. More precisely, they claim

W (S) = (len(S)−D(S))kT ln 2 ,

where the “defect” D(S) is bounded from above and be-
low by a smooth Rényi entropy of the distribution of S
from the demon’s viewpoint, modeling her ignorance.

The work [8] does not consider the algorithmic aspects
of the demon’s actions extracting the free energy, but
the effect of the demon’s a priori knowledge on S. If we
model the demon as an algorithmic apparatus, then we
should specify the form of that knowledge explicitly. For
instance, vanishing conditional entropy means that S is
uniquely determined from the demon’s viewpoint. Does
this now mean that the demon possesses a copy of S,
or the ability to produce such a copy, or pieces of in-
formation that uniquely determine S? This question
sits at the origin of the gap between the two described
groups of results; it is maximal when the demon fully
“knows” S which, however, still has maximal complex-
ity even given her internal state (an example see below).
In this case, the first result claims W (S) to be 0, whereas
W (S) ≈ len(S) according to the second. The gap van-
ishes if, e.g., “knowing S” is understood in a construc-
tive — as opposed to entropic — sense, meaning that
“the demon has a copy of S represented in her internal
state:” If that copy is included in Bennett’s reasoning,
then his result reads

W (S, S) ≈ len(S, S)−K(S, S) ≈ 2 len(S)−K(S) ≈ len(S).

III. WORK EXTRACTION IS DATA
COMPRESSION (WITH HELPER)

We analyze the case of a demon with knowledge and
understand work extraction to be a computation carried
out by this demon.

A. The Model

We assume the demon to be a universal Turing ma-
chine U the memory tape of which we assume to be suf-
ficiently long for the tasks and inputs in question, but
finite. The tape initially contains S, the string the fuel
value of which is to be determined, X, a finite string
modeling the demon’s knowledge about S, and 0’s for the
rest of the tape. After the extraction computation, the
tape contains, at the bit positions initially holding S, a
(shorter) string P plus 0len(S)−len(P ), whereas the rest of
the tape is (again) the same as before work extraction.
The demon’s operations are logically reversible and can,
hence, be carried out thermodynamically reversibly [9].
Logical reversibility in our model is the ability of the

same demon to carry out the backward computation, i.e.,
from P ||X to S||X.2 We denote by E(S|X) the maximal
amount of 0-bits extractable logically reversibly from S
given the knowledge X, i.e.,

E(S|X) := len(S)− len(P )

if P ’s length is minimal (see Figure 2).

S X 00 . . . 0

P 00 . . . 0 X 00 . . . 0

E(S|X)

Figure 2. The model

According to the above, the work value of any physical
representation of S for a demon knowing X is

W (S|X) = E(S|X)kT ln 2 .

We derive bounds on E(S|X).

B. Lower Bound

Let C be a computable function

C : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗

with len(C(A,B)) ≤ len(A) and such that

(A,B) 7→ (C(A,B), B)

is injective. We call C a data-compression algorithm with
helper. Then we have

E(S|X) ≥ len(S)− len(C(S,X)) .

This can be seen as follows. First, note that the func-
tion

A||B 7→ C(A,B)||0len(A)−len(C(A,B))||B

is computable and bijective. From the two (possibly ir-
reversible) circuits computing the compression and its
inverse, one can obtain a reversible circuit realizing the
function and where no further input or output bits are
involved. This can be achieved by first implementing
all logical gates with Toffoli gates and uncomputing all

2 Note that this is the natural way of defining logical reversibility
in our setting with a fixed input and output but no sets nor
bijective maps between them.
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junk [4] in both of the circuits. The resulting two circuits
have now both still the property that the input is part
of the output. As a second step, we can simply combine
the two, where the first circuit’s first output becomes the
second’s second input, and vice versa. Roughly speaking,
the first computes the compression and the second re-
versibly uncomputes the raw data. The combined circuit
has only the compressed data (plus the 0’s) as output,
on the bit positions carrying the input previously. (This
circuit is roughly as efficient as the less efficient of the
two irreversible circuits for the compression and for the
decompression, respectively.) We assume this reversible
circuit to be hard-wired in the demon’s head. A typical
example for a compression algorithm that can be used is
Ziv-Lempel [16].

C. Upper Bound

We have the following upper bound on E(S|X):

E(S|X) ≤ len(S)−KU (S|X) ,

where KU (S|X) is the conditional Kolmogorov complex-
ity (with respect to the demon U) of S given X, i.e., the
length of the shortest program P for U that outputs S,
given X. The reason is that the demon is only able to
carry out the computation in question (logically, hence,
thermodynamically) reversibly if she is able to carry out
the reverse computation as well. Therefore, the string P
must be at least as long as the shortest program for U
generating S if X is given.

Although the same is not true in general, our upper
bound is tight if KU (S|X) = 0. The latter means that
X itself is a program for generating an additional copy
of S. Then demon can then bit-wisely XOR this new
copy of S to the original S on the tape, hereby produc-
ing 0len(S) reversibly to replace the original S (at the
same time saving the new one, as reversibility demands).
When Bennett’s “uncomputing trick” is used — allowing
to make any computation by a Turing machine logically
reversible [4] —, then a history string H is written to the
tape during the computation of S from X such that after
the XORing, the demon can, in a (reverse) stepwise man-
ner, uncompute the generated copy of S and end up in the
tape’s original state — except that the original S is now
replaced by 0len(S): This results in a maximal fuel value
matching the (in this case trivial) upper bound. Note
that this is in harmony with [8] if this is how vanishing
conditional entropy is established.

D. Description Complexity and Ω

We contrast our bounds with the entropy-based results
of [8]: According to the latter, a demon having com-
plete knowledge of S is able to extract maximal work:
E(S) ≈ len(S). What means “knowing S”? (see Fig-
ure 3). The results are in accordance with ours if the

S S

(a)

S

P

S

(b)

S = ΩN
“S is
ΩN”

(c)

Figure 3. Knowing S

demon’s knowledge consists of (a) a copy of S, or at
least of (b) its ability to algorithmically reconstruct S,
based on a known program P , as discussed above. It
is, however, possible (c) that the demon’s knowledge is
of different nature, merely determining S uniquely with-
out providing the ability to build S. For instance, let
the demon’s knowledge about S be: “S equals the first
N bits ΩN of the binary expansion of Ω.” Here, Ω is
the so-called halting probability [5] of a fixed universal
Turing machine (e.g., the demon U itself). Although
there is a short description of S in this case, and S is
thus uniquely determined in an entropic sense, there is
no set of instructions shorter than S enabling the demon
to generate S — which would be required for work ex-
traction from S according to our upper bound. In short,
the gap reflects the gap between the “unique-description
complexity”3 and the Kolmogorov complexity.

E. Work Value and Macrostate

Let us investigate the connection between work ex-
traction from a microstate S and the corresponding
macrostate M(S). Whereas the meaning of the latter
notion is clear in thermodynamics in the case of equilib-
rium states or with respect to a fixed coarse-graining, it
is less obvious how to define it for general S.

It has already been observed that the notion of Kol-
mogorov complexity can allow, in principle, for ther-
modynamics independent of probabilities or ensembles.
Zurek [17] defines physical entropy Hp to be

Hp(S) := K(M) +H(S|M) ,

where M stands for the collected data at hand, and
K(M) for their most compressed description, while

3 Note that a diagonal argument, called Berry paradox, shows that
the notion of “description complexity” cannot be defined gener-
ally for all strings.
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H(S|M) is the remaining conditional Shannon entropy
of the microstate S, given M . That definition of a
macrostate it subjective since it depends on the available
data. How instead can the macrostate — and entropy,
for that matter — be defined objectively? We propose
to use the Kolmogorov sufficient statistics [10] of the mi-
crostate: For any k ∈ N, let Mk be the smallest set such
that S ∈ Mk and K(Mk) ≤ k hold. Let further k0 be
the value of k where the function log |Mk| becomes linear
with slope −1. Intuitively speaking, k0 is the point from
which on there is no more “structure” to be exploited for
describing S within Mk0

. We define M(S) := Mk0
to

be S’s macrostate. It yields a program generating S of
minimal length

K(S) = k0 + log |Mk0 | = K(M(S)) + log |M(S)| .

The fuel value of a string S ∈ {0, 1}N is now related to

k

log(|Mk|)

k0

E(S)

Figure 4. Kolmogorov sufficient statistics, macrostate, and
fuel value

the macrostate M(S) 3 S by

E(S) ≤ N−K(M(S))−log |M(S)| = log(|S|/|M(S)|)−k0

(see Figure 4): Decisive is neither the complexity of the
macrostate nor its log-size alone, but their sum.

A notion defined in a related way is the sophistication
or interestingness as discussed by Aaronson [1] investigat-
ing the process where milk is poured into coffee (see Fig-
ure 5). Whereas the initial and final states are “simple”

Figure 5. Coffee and milk

and “uninteresting,” the intermediate (non-equilibrium)
states display a rich (coarse-grained) structure; here, the
sophistication — and also K(M) for our macrostate M
— becomes maximal.

During the process under consideration, neither the
macrostate’s complexity nor its size is monotonic in time:
Whereas K(M) has a maximum in the non-equilibrium
phase of the process, log |M | has a minimum there (see
Figure 6). On the other hand, the complexity of the
microstate itself,

K(S) = K(M) + log |M | ,

is a candidate for a monotonically nondecreasing quan-
tity: Is this entropy, and is its monotonicity the second
law of thermodynamics in that view? That law is guaran-
teed to hold under the assumption of logical reversibility :
The future contains (essentially) all the complexity of the
past if we can, step by step, reconstruct the latter from
the former.

t

K(M)

log(|M |)

K(S)

Figure 6. The complexity and the size of the macrostate

IV. CONCLUSIONS

In an attempt to reconcile two groups of statements on
the fuel value of a string S, we suggest that this quan-
tity be given by the difference of the length of S and
of its compression, given the complete knowledge (initial
state) of the extraction device. We understand the work-
extraction process algorithmically, to be carried out by a
Turing machine. The Church-Turing hypothesis stating
that all natural processes can be so seen motivates this
view; a similar perspective can been used with respect to
Bell inequalities [15].

When one replaces the entropy of a probability dis-
tribution by a context-independent complexity, the sec-
ond law of thermodynamics reads: The complexity of the
microstate of a closed system does not decrease. This is
equivalent to saying that the fuel value in a closed system
does not increase. Here, the circle is closed; we find the
Landauer principle we started from: If a complex sub-
string of the microstate becomes simple, then in another
part of it, there must be redundancy (i.e., low complex-
ity or: free energy) disappearing into complexity (i.e.,
“heat”).

If the second law is the fact that the complexity of
the microstate is non-decreasing, then the law automati-
cally holds for all logically reversible processes: The past
cannot have been significantly more complex than the fu-
ture if the latter allows for reconstructing the former in
principle.

While we propose to view the second law as a state-
ment about microstates, it does have an implication for
macrostates as long as their “descriptions” are simple —
which is the case, e.g., if the macrostate is of the usual
thermodynamic kind such as “a gas of N particles is in
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Figure 7. Determinism vs. randomness

a volume V at temperature T ,” etc.: Then, logical re-
versibility implies that the macrostate does (virtually)
not shrink in time. In this, we can recognize the tra-
ditional view of the second law. Note, however, that
under the reversibility condition, this consequence holds
always, while the second law is compatible with the en-
tropy shrinking by N with probability 2−N . The gap
reflects the fact that the thermodynamical and compu-
tational notions of a macrostate can differ: A gas state
may look unsuspicious (large thermodynamic microstate)
in the traditional view although, e.g., the positions of
its particles are simply encoded in the expansion of π
(very small computational macrostate). Which law is
now fundamental, which is emergent? (It is fair to as-
sume that the one that is valid without exception under-
lies the other?)

Ironically, the computational second law follows from

reversibility of the computation, whereas the thermody-
namical second law is usually linked to its exact opposite:
irreversibility.

Given logical reversibility and, hence, the validity of
the second law, determinism denotes the fact that the
complexity is essentially constant in time, whereas ran-
domness is an increase of that quantity (see Figure 7).
Alternative definitions of (freeness of) randomness are
based on a given spacetime structure, such as in [7].
(Note that this definition is compatible with full deter-
minism in the probabilistic picture. The additional con-
dition that “something which did not happen could have”
is difficult to formalize.) It has been proposed to start
from freeness as fundamental instead, and to find a re-
sulting causal structure from there [2].
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