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Abstract

One of the most fascinating consequences of quantum theory are non-local correlations:
Two – possibly distant – parts of a system can have a behavior under measurements un-
explainable by shared information. A manifestation thereof is so-called pseudo-telepathy :
Tasks that can be performed by two parties who share a quantum state, whereas clas-
sically, communication would be necessary to always succeed. We show that pseudo-
telepathy games can often be modeled by graphs: The classical strategy to win the game
is a coloring of this graph with a given number of colors. We discuss these parallels and
study the class of graphs corresponding to the first two-party pseudo-telepathy game,
proposed by Brassard, Cleve, and Tapp in 1999. This leads to a proof that the game
indeed has the desired property.
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1. Entanglement-Based Games and Graphs

Pseudo-telepathy is the phenomenon that for achieving certain well-defined distributed
tasks, communication can be replaced by measuring shared quantum states displaying
so-called entanglement; this does not imply, however, that quantum entanglement allows
for communication.

In a two-player pseudo-telepathy game, two separated players who are not able to
communicate are asked two questions, xA and xB , respectively, and should give answers
yA and yB satisfying a certain condition defined by the game. Formally, for a pair of
questions (xA, xB), the answers (yA, yB) have to be such that

(xA, xB , yA, yB) ∈ RXY ⊆ XA ×XB × YA × YB (1)

holds, where the game is defined by the relation RXY . (Here, XA, XB , YA, and YB stand
of the ranges of possible questions to and answers from Alice and Bob, respectively.)

Some of these games are of particular interest since they can be won by parties sharing
quantum information, but not by parties sharing only classical information initially.
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A game with this property can be used for demonstrating the existence of quantum
entanglement — however, this is true only if a proof is provided that there is no classical
strategy for winning the game with certainty.

2. Special Case: The Game by Brassard, Cleve, and Tapp

Consider the following game: Two parties Alice and Bob, who are not allowed or able
to communicate with each other, are asked two separate questions. They win the game
if they manage to respond to these questions such that the following simple condition is
satisfied: Their answers have to be equal if and only if the questions were equal. Now,
Alice and Bob, who are allowed to meet or exchange arbitrary information beforehand,
could easily win by just repeating the questions asked. However, the game requires the
answers to be shorter than the questions. More precisely, the questions asked to Alice
and Bob are two N -bit strings xA and xB , respectively, for some N = 2n, such that

dH(xA, xB) ∈ {0, N/2} ,

where dH is the Hamming distance of the two strings. The answers given by Alice and
Bob are supposed to be n (= logN)-bit strings yA and yB with

yA = yB ⇐⇒ xA = xB .

Formally, according to (1),

XA = XB = {0, 1}2
n

,YA = YB = {0, 1}n,

RBCT
XY := {(xA, xB , yA, yB) : (xA = xB ∧ yA = yB) ∨ (dH(xa, xb) = 2n−1 ∧ yA 6= yB)} .

(2)
It has been shown that if N is large enough, this game cannot be won classically. More

precisely, it was proven in [4], [6] that the amount of communication required between
Alice and Bob for winning the game (with certainty) is of order Ω(N). Note, however,
that this result is asymptotic and does not say anything about particular instances of
the problem.

One reason why the described game is of interest is that if Alice and Bob are, prior
to the question-and-answer phase of the game, allowed to exchange not only classical but
also quantum information, they can win the game with certainty [3]. More precisely, Alice
and Bob need n = logN so-called EPR pairs [1]. An EPR pair describes two possibly
distant systems, for instance photons (where the property of interest is their polarization),
which show a strange behavior when measurements are carried out on them. It was shown
in [1] that this behavior, often referred to as (maximal) entanglement, has no classical
explanation — based on so-called hidden variables. The rest of this article does not
require any knowledge in quantum mechanics or quantum information theory, and we do
not have to go into detail here. Our goal is, rather, a full classical analysis of the game.

As shown in [3], the two described results together imply the price for perfectly simu-
lating such quantum entanglement by classical communication: The amount of commu-
nication required for the classical simulation of k EPR pairs is of order Ω(2k). For a single
EPR pair, for instance, one bit suffices [10]. It is important to note that this result holds
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for the perfect simulation of quantum entanglement; in average, less communication is
sufficient to approximate the entangled behavior of states arbitrarily precisely [5].

It is unsatisfactory that the lower bound on the classical communication is only
asymptotic. If, for instance, a demonstration experiment is to be designed to convince
an audience of the existence of quantum entanglement, it has to be known for which
parameter N the game cannot be won without the exchange of classical information,
and with what probability of failure.

This is a motivation for a further classical analysis of the pseudo-telepathy game. The
questions addressed in the rest of this paper are the following: Is the pseudo-telepathy
game related to another problem which has been well studied? What is the smallest
number N for which the game cannot be won without communication? The first question
is addressed, and answered positively, in Section 3. The second question is, based on that,
treated in Section 4. It is shown that N = 16 is the smallest such game parameter [9].

3. Relating Communication and Coloring Graphs

Here we show a close relationship between the pseudo-telepathy game and a graph-
coloring problem [8]. More precisely, the question whether the game can be won classi-
cally or not — and if not, how much classical communication is necessary — is reduced to
determining the chromatic number of certain graphs. The chromatic number of a graph
is the minimum number of different colors needed to assign to each vertex a color in such
a way that adjacent vertices have different colors. We first define a generalized version of
the game in terms of graphs. These games are often referred to as Deutsch-Jozsa games.

Definition 1. Let G be an undirected graph with vertex set V and edge set E ⊆ V 2.
The pseudo-telepathy game in G with answer length n and communication c, denoted by
PT(G,n, c), is defined as follows. Two parties A and B are given vertices vA and vB
(the questions) satisfying the condition that vA = vB or (vA, vB) ∈ E. Then the parties
are allowed to exchange at most c bits of communication (each bit in either direction).
Then A and B are said to win the game PT(G,n, c) if they can both generate an n-bit
output rA and rB (the answer) with the property that rA = rB if and only if vA = vB .

Let χ(G) be the chromatic number of G, i.e., the minimal number of colors required for
coloring the vertices of the graph in such a way that vertices which are connected by an
edge have different colors.

Lemma 1 and Theorem 2 reduce the corresponding graph and show the relation
between a game defined by a graph and the graph’s chromatic number.

Lemma 1. Let G = (V,E) be an undirected graph with some 2n-coloring where |V | > 2n.
Let v, v′ ∈ V with (v, v′) 6∈ E and having the same color. Let G̃ be the graph obtained
from G by merging the two non-adjacent vertices v and v′. More precisely, the vertex
and edge sets of G̃ are

Ṽ := (V \ {v, v′}) ∪ {ṽ}

Ẽ := (E ∩ (V \ {v, v′})2) ∪
⋃

w∈V, (w,v)∈E or (w,v′)∈E

{w, ṽ}

Then PT(G̃, n, c) can be won if and only if PT(G,n, c) can be won.
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Proof. Assume first that PT(G,n, c) can be won. We show that PT(G̃, n, c) can be
won by the same protocol, where ṽ is treated as v. Let ṽA and ṽB be the questions
asked to A and B, respectively. Clearly, the described protocol works well if ṽA 6= ṽ and
ṽB 6= ṽ. Assume ṽA = ṽB = ṽ. Then the protocol corresponds to the protocol for G
with vA = vB = v, and A and B end up with the same answers. Let finally ṽA = ṽ,
but ṽB 6= ṽ. Then the executed protocol corresponds to the one for G with vA = v and
vB 6= v, and hence ends up with different answers.

Let us now assume that PT(G̃, n, c) can be won, Then PT(G,n, c) can be won by the
same protocol, where v and v′ are both treated as ṽ. The only critical case is vA ∈ {v, v′}
and vB ∈ {v, v′}. Here, A and B will end up with the same answers (since ṽA = ṽB = ṽ).
This is always correct since (v, v′) 6∈ E implies vA = vB in this case. ✷

We have seen that the identification of vertices of the graph conserves the possibility
of winning the corresponding pseudo-telepathy game.

To study the amount of classical communication required to win a game defined by
on an arbitrary graph G, we show that in Theorem 2 that it is sufficient to consider the
complete graph Cχ(G).

Theorem 2. Let Cχ(G) be the complete graph (i.e., every pair of vertices is connected)
with χ(G) vertices. Then PT(G,n, c) can be won if and only if PT(Cχ(G), n, c) can be
won.

Proof. Given an minimal coloring of graph G with χ(G) colors, there exists a sequence

G1, G2, . . . , Gm

of graphs with G1 = G, Gm = Cχ(G), and Gi+1 obtained from Gi by identifying, with the
construction of Lemma 1, two vertices of the same color (they are, hence, unconnected)
for all i = 1, . . . ,m− 1. Then Lemma 1 implies that PT(Gj , n, c) can be simultaneously
won for all j ∈ {1, . . . ,m}, or for all j it cannot be won.

✷

Corollary 3. Let G be a graph. Assume that PT(G,n, c) can be won. Then

c ≥ log2 χ(G)− n .

Proof. By Theorem 2, we can conclude first that PT(Cχ(G), n, c) can be won. More
specifically, we can assume that PT(Cχ(G), n, c) can be won by a protocol which is entirely
deterministic with respect to the behavior of both parties. (The reason is that the
protocol must be successful with probability one, i.e., for every single sequence of coin
tosses if it were probabilistic.) This implies that at any given point of the protocol, say
after the i-th message has been sent, the space of pairs of questions (vA, vB) compatible
with the communication is of the form V i

A × V i
B . This can be seen by induction. Each

message bit sent in one direction rules out, from the receiver’s point of view, some of the
questions the sender may have been asked, and is compatible with the others. Besides
that, however, all combinations of questions asked to A and B remain possible.
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Let V i
∩ := V i

A∩V i
B be the overlap of the sets V i

A and V i
B at some point of the protocol.

We now show the following two statements.

1. Assume that a single message bit is sent from one party to the other. Then, for at
least one of the two possible values of this bit, we have

|V i+1
∩ | ≥ |V i

∩|/2 .

(Here, V i
∩ and V i+1

∩ are the overlap sets before and after the bit was sent, respec-
tively.)
Proof. Assume that one message bit m is sent from A to B. Then

V i+1
∩ (m = 0) ∪ V i+1

∩ (m = 1) = V i
∩ ,

where V i+1
∩ (m = b) is the resulting overlap set, given that the bit m sent was equal

to b.

2. If the set V∩ is greater than 2n after the communication between A and B, then
the game cannot be won (without further communication).
Proof. Given that |V∩| > 2n at the end of the communication, there are at least
two vertices v, v′ ∈ V∩ with the property that A outputs the same answer for the
questions vA = v and vA = v′. Since vB = v and vB = v′ are both possible, too,
the resulting pair of answers cannot be correct in every case.

Since the initial set V 0
∩ has size χ(G), we can conclude that at least

log2 χ(G)− n

message bits must be sent for winning the game. ✷

Corollary 4. Let G be a graph, and let c, n ∈ N with log2 χ(G)− n ≤ 0 or

c ≥ log2 χ(G)− n+ 1 .

Then PT(G,n, c) can be won.

Proof. Let us first assume that n ≥ log2 χ(G). Then the game can be won by encoding
the colors as n-bit strings. Here, the answer to a question, i.e., a vertex, is the encoding
of its color.

Let now c ≥ log2 χ(G)−n+1, hence also c ≥ ⌈log2 χ(G)⌉−n+1. Then PT(Cχ(G), n, c)
can be won as follows.

Assume that the vertices of the graph Cχ(G) are encoded as binary strings of length
⌈log2 χ(G)⌉. Given her question vA, A sends the first

⌈log2 χ(G)⌉ − n+ 1

bits of the encoding of vA to B. A’s answer rA are the last n bits of the encoding of vA.
Note that the two strings have an overlap of one bit; let b denote the value of this bit.

B on the other hand compares the first ⌈log2 χ(G)⌉ − n bits of his question vB with
the string received from A, but after discarding its last bit. Given that the compared
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strings are equal, his answer rB are the last n bits of the encoding of his question vB .
Given that the strings are not equal however, Bob’s answer is

rB = (1− b)00 · · · 0,

i.e., the first bit of the string is the bit opposite to b, which is the first bit of A’s answer
rA; hence the answers are different in this case (as they should be) since they differ in
the first bit. With this strategy, they always win the game. The statement now follows
from Theorem 2. ✷

These results allow for analyzing the pseudo-telepathy game by determining the chro-
matic number of graphs. Unfortunately, this problem is, in its general formulation, NP-
hard. The graphs that arise from the game as described in Section 1, however, are highly
symmetric and have been studied already. This will allow us to make statements about
the game and, therefore, about how to design a demonstration experiment to prove the
existence of quantum entanglement.

4. Analysis of the Game By Brassard, Cleve, and Tapp

The graph corresponding to the pseudo-telepathy game described in Section 2 is the
following.

Definition 2. Let n ≥ 1, N = 2n. The graph GN = (VN , EN ) consists of the vertex set
VN := {0, 1}N and the edge set EN := {(v, v′) | v, v′ ∈ VN , dH(v, v′) = N/2}.

It is not difficult to see that for N ≥ 4, the graph has two isomorphic connected com-
ponents VN,e and VN,o, consisting of the vertices with even and odd Hamming weight,
respectively.

A lower bound on the chromatic number χ(GN ) of GN can be obtained immediately
from the size of a maximal clique (completely connected subgraph) of the graph. Such
a clique is given by the vertices corresponding to the N codewords of a dual Hamming
code.

Lemma 5. For all N = 2n, n ≥ 1, we have

χ(GN ) ≥ N . (3)

Proof. First of all, it is clear that the size of every clique of GN is a lower bound to its
chromatic number since every vertex in this subgraph needs a different color. Secondly,
the set of vertices

C := {v | v =

logN
⊕

i=1

λivi , λi ∈ {0, 1}} ,

where

v1 = 00 · · · 0
︸ ︷︷ ︸

N/2

11 · · · 1
︸ ︷︷ ︸

N/2
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v2 = 00 · · · 0
︸ ︷︷ ︸

N/4

11 · · · 1
︸ ︷︷ ︸

N/4

00 · · · 0
︸ ︷︷ ︸

N/4

11 · · · 1
︸ ︷︷ ︸

N/4

...

vlogN−1 = 001100110011 · · · 0011

vlogN = 010101010101 · · · 0101 ,

forms a clique of size N since for all v, v′ ∈ C, v 6= v′, we have dH(v, v′) = N/2. (This
set of vertices, when the initial 0’s are left away, corresponds to the dual Hamming code
of length N − 1.) ✷

The main question we are concerned with is for which N inequality (3) is strict;
these are exactly the parameters N for which the pseudo-telepathy game cannot be won
without any communication (according to Section 2). It is known that for N = 2 and
N = 4, equality holds in (3) (e.g., the game can be won); it has been believed, however,
that for N = 8, inequality (3) is strict [3]. The parallels introduced in Section 1 will
allow us to show that this is wrong: For N = 8, the game can indeed be won.

Theorem 6. χ(G8) = 8.

Proof. Let V8 = V8,e∪V8,o be the partition of the vertices into vertices with even and
odd Hamming weights, respectively. Let

V0 := {08} ∪
⋃

1≤i≤7

{10i−1107−i}.

First, V0 is an independent set since all pairs of elements have Hamming distance 2. The
set

V0 := {v ∈ {0, 1}n | v ∈ V0}

(where v is the bit-wise complement of the string v) is an independent set as well,
and furthermore V0 ∪ V0 (⊆ V8,e) is an independent set since for all v ∈ V0, v

′ ∈ V0,
dH(v, v′) ∈ {6, 8}. We have |V0 ∪ V0| = 16. Since V8,e and V8,o are isomorphic, we can
find an independent set of the same size in V8,o. The union C0 of these two sets has 32
elements. We can now define 8 mutually disjoint independent sets C0, C1, . . . , C7 by

Cλ0+2λ1+4λ2
:= C0 ⊕ λ0 · 00001111⊕ λ1 · 00110011⊕ λ2 · 01010101

(where λi ∈ {0, 1}). These sets are mutually disjoint: the vectors C0, 00001111, 00110011
and 01010101 are linearly independent in the vector space with vectors x ∈ {0, 1}n and
inner product ⊕ of the vectors defined by the bitwise XOR. Therefore, any linear com-
bination thereof is linearly independent as well. Furthermore, each of this is an indepen-
dent set (of size 32); all vertices of such a set can hence be given the same color. Thus
χ(G8) ≤ 8, and since we know that χ(G8) ≥ 8 also holds (Lemma 5), the statement is
proven. ✷
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Corollary 7. [8] The pseudo-telepathy game can be won classically without communi-
cation for N ∈ {2, 4, 8}.

Proof. For GN with N ∈ {2, 4, 8}, χ(GN ) = n (detail of χ(GN ) = N for N ∈ {2, 4, 8}
proof see [9], Section 3.). The statement is a consequence of Corollary 4 and Theorem 6.

✷

In [7] is has been conjectured what the structure of maximum independents sets is
for GN with N = 2n, especially for more interesting cases N > 8. We define a maximal
independent set of G in a generalized way according to [2] as follows:

Definition 3. An independent set Vind of a graph G(V,E) is maximal if and only if

∀v′ ∈ V \ Vind : ∃v ∈ Vind : (v, v′) ∈ E.

Definition 4. Let
(
[n]
k

)
be the set of subsets of [n] := [1, . . . , n] consisting of elements

with cardinality k. For even k with t + 2i ≥ 0 and 0 ≤ i ≤ (n − t)/2, let Fn,k
t,i be the

following set:

Fn,k
t,i =

{

F ∈

(
[n]

k

)

: |F ∩ [t+ 2i]| ≥ t+ i
}

. (4)

Moreover, let [t+ 2i] = {1, . . . , t+ 2i} denote the intersection area of size t+ 2i.

Note that in contrast to [2], t will be negative for some sets Fn,k
t,i . In their work, Ahlswede

and Khachatrian proved that Fn,k
t,i is a maximal, t-intersecting subset of

(
[n]
k

)
for a specific

i, depending on n. We use the intersection-property to determine an independent set in
Gn(V,E).
First let us consider the vertices with Hamming weight less than n/2 (again in the
subgraph with vertex set Veven). For ñ ≥ 3, let

V
<n

2

ind = Fn,0
−n

4
−1,n

4
+1 ∪ Fn,2

−n

4
+3,n

4
−2 ∪ . . .

∪F
n,n

2
−4

n

4
−3,1 ∪ F

n,n
2
−2

n

4
−1,0

=

n

4
−1
⋃

l=0

Fn,2l
−cn+2l,cn−l (5)

be a subset in the subgraph of Gn(V,E) with vertex set V
<n

2

even = {v ∈ Veven : WH(v) <
n/2}, for cn = n/4− 1.

Define further the inverse set of Fn,k
t,i as the set Fn,k

t,i with elements
{
A ∈

(
[n]
n−k

)
: A ∈

Fn,k
t,i

}
. Now, let us determine a maximal independent set, with V

>n

2

ind analogously defined
as set (5).

Theorem 8. For ñ ≥ 3, the set

Vind = V
<n

2

ind ∪ V
>n

2

ind

=

n

4
−1
⋃

l=0

(Fn,2l
−cn+2l,cn−l ∪ Fn,2l

−cn+2l,cn−l) (6)
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is a maximal independent set of Gn(Veven, E) for cn = n/4− 1.

To prove Theorem 8, we examine first the intersection properties of its subsets in the
following lemmas.

Lemma 9. For 0 ≤ l ≤ n
4 − 1, Fn,2l

−cn+2l,cn−l is an independent set.

Proof. We have to consider only sets with vertices with Hamming weight 2l ≥ n/4,
since for other sets, the cardinality of the symmetric difference (A ∪ B \ A ∩ B) is at

most n/2− 2. For the remaining cases where A,B ∈ Fn,2l
−cn+2l,cn−l and l ≥ n/8, we have

|A∩B| ≥ −cn +2l = −n/4+ 1+ 2l because of Definition 4, and, the Hamming distance
of the corresponding codewords is at most 2(2l − (−cn + 2l)) = n/2 − 2, and hence,
independence follows as well. ✷

Lemma 10. For all l, l′ ∈ {0, . . . , n
4 −1}, Fn,2l

−cn+2l,cn−l∪F
n,2l′

−cn+2l′,cn−l′ is an independent
set.

Proof. First note that in set (6), t+ 2i = (−cn + 2l) + 2(cn − l) is equal to cn = n/4− 1
and, therefore, the size of the intersection area is n/4 − 1 for all subsets. Consider

l, l′ ∈ {0, . . . , n/4− 1}, A ∈ Fn,2l
−cn+2l,cn−l and B ∈ Fn,2l′

−cn+2l′,cn−l′ .

For 2l + 2l′ < n/2: Again, the cardinality of the symmetric difference is less than n/2,
and the union of the sets is independent.

For 2l + 2l′ ≥ n/2: We consider the intersection between A and B in the intersection
area. As a consequence of Definition 4, we have |A ∩ [n/4 − 1]| ≥ l and |B ∩
[n/4− 1]| ≥ l′, therefore, A and B will be at least (l + l′ − (n/4− 1))-intersection
(Inequality (7)). Since we consider the cases where 2l+2l′ ≥ n/2, we have l+ l′ ≥
n/4 (Inequality (8)), and the symmetric difference between A and B is the following:

|A ∪B \A ∩B| ≤ |A|+ |B| − 2
(

l + l′ −
(n

4
− 1

))

(7)

≤ 2l + 2l′ − 2
(n

4
−
(n

4
− 1

))

(8)

=
n

2
− 2 .

Since this holds for all such A and B, the union set is independent, and the lemma
follows. ✷

Lemma 11. If Vind is an independent set and v ∈ Vind, then Vind ∪ v is an independent
set as well.

Proof. If Vind is an independent set and v ∈ Vind, then for all v′ ∈ Vind \ {v},
DH(v, v′) 6= n/2. Generally ∀u,w ∈ {0, 1}n : DH(u,w) = n − DH(u,w) holds and,
hence, for all v′ ∈ Vind \ {v} is DH(v, v′) = n −DH(v, v′) 6= n/2, and the proof is com-
plete. ✷
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Proof of Theorem 8. Independence follows directly from Lemmas 9, 10, and 11. We
prove that the set is maximal by contradiction. Suppose Vind is not maximal, then by
Definition 3, there must exist a vertex v ∈ Veven \ Vind, such that Vind ∪ {v} is still
an independent set. Since Fn,0

−n

4
−1,n

4
−1 = {0n} ⊂ Vind, WH(v) 6= n/2. Furthermore

WH(v) /∈ {0, 2, . . . , n/2− 2, n/2 + 2, . . . , n− 2, n}, because Fn,2l
−cn+2l,cn−l are maximal by

definition. ✷

In order to find a lower bound on the chromatic number of such graphs, maximum
independent sets allow to find such a bound. Now, we assume that V ∗

ind = Vind as
defined in Equality (6) is a maximum independent set Gn(Veven, E). The size of V ∗

ind for
2ñ = n ≥ 8 is

|V ∗
ind| = 2

n

8
−1

∑

l=0

l∑

m=0

(n
4 − 1

l +m

)(3n
4 + 1

m

)

+

2

n

8
−1

∑

l=0

l∑

m=0

( n
4 − 1

n
4 − 1− l

)( 3n
4 − 1

n
4 − 1− l −m

)

. (9)

Since the chromatic number χ(Gn) ≥ n(Gn)/α(Gn), and we assume that V ∗
ind is a

maximum independent set, we have a lower bound on the chromatic number, namely
for N = 16, χ(G16) ≥ 28. In 2006, the conjecture (9) could be proven [17] for the case
N = 16 and it is assumed that for the case N = 32 it holds too, see Section 5.

5. Pseudo-Telepathy for N ≥ 16

In 2003, we could prove that G16 yields a pseudo-telepathy game [9].

Theorem 12. For the graph GN ,

χ(G16) > 16 .

In order to prove Theorem 12, we use the well-known fact that for any graph G

χ(G) ≥
|V (G)|

M

holds if M is an upper bound on the size of all independent sets of the graph G. An
independent set is a set of vertices which are pairwise unconnected, and clearly, any
set of vertices of the same color in a coloring fulfills this. We found an upper bound
M16 ≤ 3912 for maximum independent sets in G16 [3]. This yielded a lower bound 17
for the chromatic number χ(G16). This was the first proof that the Brassard et al. game
for N = 16 is indeed a pseudo-telepathy game.

In 2005, Godsil and Newman [14] proved — by considering the Delsarte-Hoffman
bound, maximum-cliques, and a recursive construction — that χ(GN ) > N with N = 2n
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for all N ≥ 16. At the same time Klerk and Pasechnik could prove with semi-definite
programming that for N = 16 our conjecture [7] is indeed true [17]. They also assume
that the case N = 32 is true (which Newman [11] in his PhD thesis in 2004 suggested
to be wrong). In the same year, Avis et al. [15] found a proof using quantum Fourier
transform instead of Hadamard transformation as used in [3] to win the game on the
graph G12. They use a well-known combinatorial result by Frankl and Rödl, where they
show that the game G12 is a pseudo-telepathy game, too. They also define the quantum
chromatic number of a graph in this context.

In 2006, Cameron, Newman, Montanaro, Severini, and Winter [16] formally investi-
gated the quantum chromatic number of a graph for different types of graphs.

6. Concluding Remarks

We have considered pseudo-telepathy games, which are a manifestation of non-locality
in a semi-deterministic fashion: The players share quantum states, the games success
probability is 1. We have shown that for a large class of games, classical strategies can
be modeled by colorings of certain graphs. Proving the existence of pseudo-telepathy
games can, thus, lead to well-studied problems. For instance, these parallels have led to
a thorough analysis [11], [12], [13], [14], [15], [16], [17] of the class of games by Brassard,
Cleve, and Tapp [3]. Crucial and central questions in the context of pseudo-telepathy
games remain open: Which quantum state allow for pseudo-telepathy? For instance,
it has been shown [12] that one single EPR-pair does not suffice for pseudo-telepathy.
What is, for games using a given state, the minimal classical success probability that can
be reached using less communication than required (i.e., the maximal separation between
classical versus quantum strategies)?
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